Share to: share facebook share twitter share wa share telegram print page

 

Большой додекаэдр

Большой додекаэдр
Octahedron
Тип тело Кеплера — Пуансо
Звёздчатая форма Правильного додекаэдра
Элементы F = 12, E = 30, V = 12
Характеристика
Эйлера
= −6
Рёбер по граням 12{5}
Символ Шлефли {5,5/2}
Символ Витхоффа 5/2 | 2 5
Диаграмма Коксетера node_15node5ratd2node
Группа симметрии Ih, H3, [5,3], (*532)
Обозначения U35,C44, W21
Свойства правильный
невыпуклый
Вершинная фигура
(55)/2
(Вершинная фигура)
Двойственный


Малый
звёздчатый
додекаэдр

двойственный
многогранник

Большой додекаэдр[1][2][3] — это тело Кеплера — Пуансо с символом Шлефли {5,5/2} и диаграммой Коксетера — Дынкина node_15node5ratd2node. Это один из четырёх невыпуклых правильных многогранников. Он состоит из 12 пятиугольных граней (шесть пар параллельных пятиугольников), с пятью пятиугольниками в каждой вершине, пересекающих друг друга и создающих рисунок пентаграммы.

Изображения

Прозрачная модель Сферическая мозаика

(С анимацией)

Этот многогранник представляет сферическую мозаику с плотностью 3. (Один сферический пятиугольник выделен жёлтым цветом)
Развёртка Звёздчатая форма
× 20
Развёртка поверхности —

двадцать равнобедренных треугольных пирамид, расположенных как грани икосаэдра


Он также может быть построен как вторая (из трёх) звёздчатых форм додекаэдра и в списке Веннинджера многогранник имеет номер [W21].

Связанные многогранники

Многогранник имеет то же самое расположение рёбер[англ.], что и выпуклый правильный икосаэдр.

Если большой додекаэдр рассматривать как многогранник, имеющий нормальные треугольные грани (обычно гранью большого додекаэдра считается плоский пятиугольник, часть которого находится внутри), то он имеет ту же топологию, что и триакисикосаэдр (поверхность рода 4), но с вогнутыми пирамидами, а не выпуклыми.

Процесс усечения, применённый к большому додекаэдру даёт серию невыпуклых однородных многогранников. Усечение рёбер до их полного уничтожения (превращения в точку) даёт додекододекаэдр. Применение процесса полного усечения граней (до превращения в точку) даёт малый звёздчатый додекаэдр.

Название Малый звёздчатый додекаэдр Додекододекаэдр Усечённый
большой
додекаэдр
[англ.]
Большой
додекаэдр
Диаграмма
Коксетера —
Дынкина
node5node5ratd2node_1 node5node_15ratd2node node_15node_15ratd2node node_15node5ratd2node
Рисунок

Использование

См. также

Примечания

Литература

  • М. Веннинджер. Модели многогранников. — Мир, 1974.
  • Л. А. Люстерник. Выпуклые фигуры и многогранники. — М.: ГИТТЛ, 1956.
  • Александров П.С., Маркушевич А.И., Хинчин А.Я. Энциклопедия элементарной математики. — ГИФМЛ, 1963. — Т. IV.

Ссылки

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9