Share to: share facebook share twitter share wa share telegram print page

 

Ромбоэдр

Ромбоэдр
Ромбоэдр
Ромбоэдр
Тип Призма
Свойства выпуклый многогранник
зоноэдр
Комбинаторика
Элементы
12 рёбер
8 вершин
Грани 6 ромбов
Классификация
Группа симметрии Ci, [2+,2+], (×), порядок 2
Логотип Викисклада Медиафайлы на Викискладе

Ромбоэдр (от ромб и др.-греч. ἕδρα — основание, грань) — это геометрическое тело, являющееся обобщением куба, у которого грани не обязательно квадратны, а лишь являются ромбами. Ромбоэдр является параллелепипедом, в котором все рёбра равны. Ромбоэдр можно использовать для определения ромбоэдрической решётчатой системы, сот с ромбоэдрическими ячейками.

В общем случае ромбоэдр может иметь три типа ромбических граней, которые разбиваются на конгруэнтные пары противоположных сторон. Ромбоэдр имеет симметрию Ci порядка 2.

Четыре точки, соответствующие несмежным вершинам ромбоэдра, обязательно образуют четыре вершины ортоцентрического тетраэдра и все ортоцентрические тетраэдры могут быть получены таким образом[1].

Ромбоэдрическая решётчатая система

Ромбоэдрическая решётчатая система имеет ромбоэдрические ячейки с 3 парами уникальных ромбических граней:

В кристаллографии ромбоэдр выделен как простая форма тригональной сингонии средней категории. Минералы, имеющие форму ромбоэдра, — диоптаз, фенакит, многие минералы имеют сложные структуры с наличием ромбоэдра, например, кальцит[источник не указан 2839 дней].

Частные случаи

Вид Куб Тригональный трапецоэдр[англ.] Прямая ромбическая призма Ромбическая призма общего вида Ромбоэдр общего вида
Симметрия Oh[англ.], [4,3], порядка 48 D3d, [2+,6], порядка 12 D2h, [2,2], порядка 8 C2h[англ.], [2], порядка 4 Ci, [2+,2+], порядка 2
Рисунок
Грани 6 квадратов 6 одинаковых ромбов Два ромба и 4 квадрата 6 ромбических граней 6 ромбических граней
  • Куб: с симметрией Oh[англ.] порядка 48. Все грани — квадраты.
  • Тригональный трапецоэдр[англ.]: с симметрией D3d порядка12. Если все острые внутренние углы граней равны (все грани одинаковы). Тело можно рассматривать как вытягивание куба вдоль главной диагонали. Например, правильный октаэдр с двумя тетраэдрами, приклеенными к противоположным граням, образуют тригональный трапецоэдр с углом 60 градусов. У тригонального трапецоэдра есть хотя бы две вершины, такие, что все прилежащие к ним углы равны между собой. Через эти вершины проходит ось симметрии третьего порядка (то есть такая ось, при повороте вокруг которой на угол 120°=2π/3 тело переходит в само себя). Более того, это является признаком тригонального трапецоэдра: параллелепипед является тригональным трапецоэдром тогда и только тогда, когда он имеет ось симметрии третьего порядка[2].
  • Прямая ромбическая призма: с симметрией D2h порядка 8. Она строится из двух ромбов и 4 квадратов. Фигуру можно рассматривать как вытягивание куба вдоль диагонали на грани. Например, две треугольные призмы, соединённые по боковой грани, образуют ромбическую призму с углом 60 градусов.
  • Ромбическая призма общего вида: с симметрией C2h[англ.] порядка 4. Она имеет только одну плоскость симметрии, проходящую через четыре вершины, и имеет 6 ромбических граней.

Геометрия тела

Ромбоэдр с помеченными вершинами

Для единичного ромбоэдра[3] (длина стороны = 1), в котором острый ромбический угол равен θ, одна вершина лежит в начале координат (0, 0, 0), а одно ребро лежит на оси x, три вектора равны

e1:
e2:
e3:

Другие координаты можно получить из сложения векторов[4] 3 направлений, e1 + e2, e1 + e3, e2 + e3 и e1 + e2 + e3.

Объём ромбоэдра, длина стороны которого равна a является упрощением формулы объёма параллелепипеда и задаётся формулой

Так как площадь основания задаётся формулой , высота ромбоэдра h задаётся формулой (объём, делённый на площадь основания)

Рассмотрим внутренние диагонали ромбоэдра на рисунке. Три из внутренних диагоналей (BG, CF и DE) имеют одну и ту же длину. Их легко вычислить, используя координатную геометрию, если координаты каждой вершины известны. Расстояние в 3-мерном пространстве вычисляется по формуле [5]

Например, для единичного ромбоэдра с острым углом 72 градуса, три внутренних диагонали (BG, CF и DE) равны 1.543, а длинная диагональ (AH) равна 2.203. Объём этого ромбоэдра равен 0.8789, а высота равна 0.9242.

См. также

Примечания

  1. Court, 1934, с. 499–502.
  2. Ромбоэдр — статья из Большой советской энциклопедии
  3. Lines, 1965.
  4. Vector Addition. Wolfram (17 мая 2016). Дата обращения: 17 мая 2016. Архивировано 3 июня 2016 года.
  5. Calculate distance in 3D space. Дата обращения: 17 мая 2016. Архивировано 5 июня 2016 года.

Литература

  • L. Lines. Solid geometry: with chapters on space-lattices, sphere-packs and crystals. — Dover Publications, 1965.
  • N. A. Court. Notes on the orthocentric tetrahedron // American Mathematical Monthly. — 1934. — Октябрь. — JSTOR 2300415.

Ссылки

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9