Share to: share facebook share twitter share wa share telegram print page

 

Четырёхскатный повёрнутый бикупол

Квадратный гиробикупол
Квадратный гиробикупол
Квадратный гиробикупол
Тип Многогранник Джонсона
J28 - J29J30
Свойства выпуклый
Комбинаторика
Элементы
32 ребра
16 вершин
Грани 8 треугольников,
2 + 8 квадратов
Конфигурация вершины 8(3.4.3.4)
8(3.43)
Классификация
Группа симметрии D4d

Четырёхскатный повёрнутый бикупол — один из многогранников Джонсона (J29 = (по Залгаллеру) М5+М5). Подобно четырёхскатному прямому бикуполу (J28 = 2М5), он может быть получен соединением двух четырёхскатных куполов (J4= М5) по их основаниям. Разница лишь в том, что в этом многограннике половинки повёрнуты относительно друг друга на 45º.

Многогранник Джонсона — это один из 92 строго выпуклых многогранников, имеющих правильные грани, но не являющийся однородным (то есть, он не правильный, не архимедов, не призма или антипризма). Название многограннику дал Нортон Джонсон[англ.], который первым перечислил эти многогранники в 1966 [1].

Четырёхскатный повёрнутый бикупол является вторым в бесконечном множестве повёрнутых бикуполов.

С квадратным повёрнутым бикуполом связан удлинённый четырёхскатный повёрнутый бикупол. Этот многогранник получается, если вставить восьмиугольную призму между двумя половинками четырёхскатного повёрнутого бикупола. Есть споры, является ли удлинённый четырёхскатный повёрнутый бикупол архимедовым телом, поскольку, хотя многогранник удовлетворяет всем остальным требованиям, многогранник не вполне симметричен.

Формулы

Следующие формулы для объёма и площади поверхности могут быть использованы, если все грани являются правильными со стороной a [2]:

Связанные многогранники и соты

Четырёхскатный повёрнутый бикупол образует заполняющие пространство соты с тетраэдрами, кубами и кубооктаэдрами.
Четырёхскатный повёрнутый бикупол образует заполняющие пространство соты с тетраэдрами, квадратными пирамидами и комбинацией из кубов, удлинённых четырёхугольных пирамид и удлинённых четырёхугольных бипирамид) [3].

Примечания

  1. Johnson, 1966, с. 169–200.
  2. Stephen Wolfram, "Triangular gyrobicupola Архивная копия от 23 октября 2013 на Wayback Machine" from Wolfram Alpha. Retrieved July 23, 2010.
  3. J29 honeycomb. Дата обращения: 18 сентября 2016. Архивировано 19 октября 2016 года.

Литература

Ссылки

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9