Share to: share facebook share twitter share wa share telegram print page

 

Уплощённая треугольная клиноротонда

Уплощённая треугольная клиноротонда
(3D-модель)
(3D-модель)
Тип многогранник Джонсона
Свойства выпуклая
Комбинаторика
Элементы
20 граней
36 рёбер
18 вершин
Χ = 2
Грани 13 треугольников
3 квадрата
3 пятиугольника
1 шестиугольник
Конфигурация вершины 3(33.5)
6(3.4.3.5)
3(3.5.3.5)
2x3(32.4.6)
Классификация
Обозначения J92, М20
Группа симметрии C3v
Логотип Викисклада Медиафайлы на Викискладе

Уплощённая треуго́льная клинорото́нда[1][2] — один из многогранников Джонсона (J92, по Залгаллеру — М20).

Составлена из 20 граней: 13 правильных треугольников, 3 квадратов, 3 правильных пятиугольников и 1 правильного шестиугольника. Шестиугольная грань окружена тремя квадратными и тремя треугольными; каждая пятиугольная — пятью треугольными; каждая квадратная — шестиугольной и тремя треугольными; среди треугольных 1 грань окружена тремя пятиугольными, 3 грани — двумя пятиугольными и квадратной, 6 граней — пятиугольной, квадратной и треугольной, остальные 3 — шестиугольной и двумя треугольными.

Имеет 36 рёбер одинаковой длины. 3 ребра располагаются между шестиугольной и квадратной гранями, 3 ребра — между шестиугольной и треугольной, 15 рёбер — между пятиугольной и треугольной, 9 рёбер — между квадратной и треугольной, остальные 6 — между двумя треугольными.

У уплощённой треугольной клиноротонды 18 вершин. В 3 вершинах (расположенных как вершины правильного треугольника) сходятся две пятиугольных грани и две треугольных; в 6 вершинах (расположенных как вершины неправильного плоского шестиугольника) сходятся пятиугольная, квадратная и две треугольных грани; в 3 вершинах (расположенных как вершины правильного треугольника) сходятся пятиугольная и три треугольных грани; в 6 вершинах (расположенных как вершины правильного шестиугольника) сходятся шестиугольная, квадратная и две треугольных грани.

Метрические характеристики

Если уплощённая треугольная клиноротонда имеет ребро длины , её площадь поверхности и объём выражаются как[2]

В координатах

Уплощённую треугольную клиноротонду с длиной ребра можно расположить в декартовой системе координат так, чтобы её вершины имели следующие координаты:

  • треугольник, параллельный шестиугольнику:
  • основания треугольников, имеющих с первым треугольником общую вершину:
  • вершины пятиугольников напротив первого треугольника:
  • шестиугольник:

где — отношение золотого сечения.

При этом ось симметрии многогранника будет совпадать с осью Oz, а одна из трёх плоскостей симметрии — с плоскостью yOz.

Примечания

  1. Залгаллер В. А. Выпуклые многогранники с правильными гранями / Зап. научн. сем. ЛОМИ, 1967. — Т. 2. — Cтр. 24.
  2. 1 2 А. В. Тимофеенко. Несоставные многогранники, отличные от тел Платона и Архимеда. (PDF) Фундаментальная и прикладная математика, 2008, том 14, выпуск 2. — Стр. 188—190, 204. (Архивная копия от 30 августа 2021 на Wayback Machine)

Ссылки

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9