Квадратный паркет
Квадра́тный парке́т, квадратный паркетаж[1], квадратная мозаика или квадратная решётка — это замощение плоскости равными квадратами, расположенными сторона к стороне, при этом вершины четырёх смежных квадратов находятся в одной точке. Символ Шлефли мозаики — {4,4}, означающий, что вокруг каждой вершины имеется 4 квадрата. Конвей называл эту мозаику quadrille (кадриль). Внутренний угол квадрата составляет 90 градусов, так что четыре квадрата в вершине дают полный угол в 360 градусов. Мозаика является одной из трёх правильных мозаик на плоскости. Другие две — треугольная мозаика и шестиугольная мозаика. Однородные раскраскиСуществует 9 различных однородных раскрасок квадратной мозаики. Цвета 4 квадратов по индексам цвета вокруг вершины: 1111, 1112(i), 1112(ii), 1122, 1123(i), 1123(ii), 1212, 1213, 1234. Помечены через (i) случаи с простой зеркальной симметрией и через (ii) случаи со скользящей зеркальной симметрией. Три из этих вариантов можно рассматривать в той же фундаментальной области как редуцированные раскраски — 1112i получается из 1213, 1123i из 1234, а 1112ii из 1123ii.
Шахматная раскраска (цвета 1212) является основой для многих игр и головоломок, например, поле шахматной доски представляет собой квадратный паркет, также и для многих других игр на клетчатом поле, кроссвордов, полимино, модели «Жизнь» и других двумерных клеточных автоматов и т. п. Доска одного цвета (цвета 1111) используется, например, в игре Го. Связанные многогранники и мозаикиЭта мозаика топологически является частью последовательности правильных многогранников и мозаик, продолжающейся в гиперболической плоскости: {4,p}, p=3,4,5…
Квадратная мозаика являются частью последовательности правильных многогранников и мозаик, имеющих четыре грани на вершину. Последовательность начинается с октаэдра, символы Шлефли последовательности — {n,4}, а диаграммы Коксетера — при n, стремящемся к бесконечности.
Построение Витхоффа из квадратной мозаикиПодобно однородным многогранникам существует восемь однородных мозаик[англ.], имеющих в основе правильную квадратную мозаику. Рисуя оригинальные грани красным цветом, оригинальные вершины жёлтым, а оригинальные рёбра синим, получим 8 различных мозаик. Однако существует только три топологически различных мозаики — квадратная мозаика, усечённая квадратная мозаика и плосконосая квадратная мозаика.
Топологически эквивалентные мозаикиДругие четырёхугольные мозаики могут быть топологически эквивалентны квадратным мозаикам (4 четырёхугольника при каждой вершине). Изоэдральные мозаики имеют одинаковые грани (транзитивность по граням) и они вершинно транзитивны. Имеется 18 вариантов, при этом 6 имеют треугольные грани, не соединяющиеся ребро-к-ребру, и ещё 6 состоят из четырёхугольников с двумя параллельными рёбрами (трапеций). Приведённая симметрия предполагает, что все грани выкрашены в один цвет[2].
Упаковка круговКвадратную мозаику можно использовать для упаковки кругов, если размещать круги одинакового диаметра с центрами в вершинах квадратов. Каждый круг соприкасается с четырьмя другими кругами упаковки (контактное число)[3]. Плотность упаковки равна . Существует 4 однородных раскраски упаковки кругов. Связанные правильные комплексные бесконечноугольникиСуществует 3 правильных комплексных апейрогона, имеющих те же вершины, что и квадратная мозаика. Правильные комплексные апейрогоны имеют вершины и рёбра, при этом рёбра могут содержать 2 и более вершин. Правильные апейрогоны p{q}r ограничены выражением 1/p + 2/q + 1/r = 1. Здесь предполагается, что рёбра содержат p вершин, а вершинная фигура r-гональна[4].
См. также
Примечания
Литература
Ссылки
|