Share to: share facebook share twitter share wa share telegram print page

 

Дважды косо скрученный отсечённый ромбоикосододекаэдр

Дважды косо скрученный отсечённый ромбоикосододекаэдр
(3D-модель)
(3D-модель)
Тип многогранник Джонсона
Свойства выпуклый
Комбинаторика
Элементы
52 грани
105 рёбер
55 вершин
Χ = 2
Грани 15 треугольников
25 квадратов
11 пятиугольников
1 десятиугольник
Конфигурация вершины 5x2(4.5.10)
10x2(3.42.5)
3+11x2(3.4.5.4)
Классификация
Обозначения J79, М13+2М6
Группа симметрии Cs

Два́жды ко́со скру́ченный отсечённый ромбоикосододека́эдр[1] — один из многогранников Джонсона (J79, по Залгаллеру — М13+2М6).

Составлен из 52 граней: 15 правильных треугольников, 25 квадратов, 11 правильных пятиугольников и 1 правильного десятиугольника. Десятиугольная грань окружена пятью пятиугольными и пятью квадратными; среди пятиугольных граней 1 окружена десятиугольной и четырьмя квадратными, 4 — десятиугольной, тремя квадратными и треугольной, 2 — пятью квадратными, 2 — четырьмя квадратными и треугольной, остальные 2 — тремя квадратными и двумя треугольными; среди квадратных граней 2 окружены десятиугольной, двумя пятиугольными и квадратной, 3 — десятиугольной, двумя пятиугольными и треугольной, 1 — двумя пятиугольными и двумя квадратными, 6 — двумя пятиугольными, квадратной и треугольной, 3 — двумя пятиугольными и двумя треугольными, остальные 10 — пятиугольной, квадратной и двумя треугольными; среди треугольных граней 10 окружены пятиугольной и двумя квадратными, остальные 5 — тремя квадратными.

Имеет 105 рёбер одинаковой длины. 5 рёбер располагаются между десятиугольной и пятиугольной гранями, 5 рёбер — между десятиугольной и квадратной, 40 рёбер — между пятиугольной и квадратной, 10 рёбер — между пятиугольной и треугольной, 10 рёбер — между двумя квадратными, остальные 35 — между квадратной и треугольной.

У дважды косо скрученного отсечённого ромбоикосододекаэдра 55 вершин. В 10 вершинах сходятся десятиугольная, пятиугольная и квадратная грани; в 45 вершинах сходятся пятиугольная, две квадратных и треугольная грани.

Дважды косо скрученный отсечённый ромбоикосододекаэдр можно получить из ромбоикосододекаэдра, выбрав в нём три части — любые три попарно не пересекающихся пятискатных купола (J5), — и повернув два из них на 36° вокруг их осей симметрии, а третий удалив. Описанная и полувписанная сферы полученного многогранника совпадают с описанной и полувписанной сферами исходного ромбоикосододекаэдра.

Дважды косо скрученный отсечённый ромбоикосододекаэдр — один из четырёх наименее симметричных многогранников Джонсона (наряду с J78, J82 и J87): его группа симметрии Cs состоит из тождественного преобразования и одной зеркальной симметрии.

Метрические характеристики

Если дважды косо скрученный отсечённый ромбоикосододекаэдр имеет ребро длины , его площадь поверхности и объём выражаются как

Радиус описанной сферы (проходящей через все вершины многогранника) при этом будет равен

радиус полувписанной сферы (касающейся всех рёбер в их серединах) —

Примечания

  1. Залгаллер В. А. Выпуклые многогранники с правильными гранями / Зап. научн. сем. ЛОМИ, 1967. — Т. 2. — Cтр. 23.

Ссылки

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9