Share to: share facebook share twitter share wa share telegram print page

 

Усечённый куб

Усечённый куб
(вращающаяся модель, 3D-модель)
(вращающаяся модель, 3D-модель)
Тип архимедово тело
Свойства выпуклый, изогональный
Комбинаторика
Элементы
14 граней
36 рёбер
24 вершины
Χ = 2
Грани 8 треугольников
6 восьмиугольников
Конфигурация вершины 3.82
Двойственный многогранник триакисоктаэдр
Классификация
Обозначения tC
Символ Шлефли t{4,3}
Группа симметрии Oh (октаэдрическая)
Логотип Викисклада Медиафайлы на Викискладе

Усечённый куб[1][2][3]полуправильный многогранник (архимедово тело) с 14 гранями, составленный из 8 правильных треугольников и 6 правильных восьмиугольников.

В каждой из его 24 одинаковых вершин сходятся две восьмиугольных грани и одна треугольная. Телесный угол при вершине равен

Усечённый куб имеет 36 рёбер равной длины. При 12 рёбрах (между двумя восьмиугольными гранями) двугранные углы прямые, как в кубе; при 24 рёбрах (между треугольной и восьмиугольной гранями) двугранные углы тупые и равны как в кубооктаэдре.

Усечённый куб можно получить из обычного куба, «срезав» с того 8 правильных треугольных пирамид, — либо как пересечение имеющих общий центр куба и октаэдра.

Метрические характеристики

Если усечённый куб имеет ребро длины , его площадь поверхности и объём выражаются как

Радиус описанной сферы (проходящей через все вершины многогранника) при этом будет равен

радиус полувписанной сферы (касающейся всех рёбер в их серединах) —

Вписать в усечённый куб сферу — так, чтобы она касалась всех граней, — невозможно. Радиус наибольшей сферы, которую можно поместить внутри усечённого куба с ребром (она будет касаться только всех восьмиугольных граней в их центрах), равен

Расстояние от центра многогранника до любой треугольной грани превосходит и равно

В координатах

Усечённый куб можно расположить в декартовой системе координат так, чтобы координаты его вершин были всевозможными перестановками чисел

Начало координат будет при этом центром симметрии многогранника, а также центром его описанной и полувписанной сфер.

Заполнение пространства

С помощью октаэдров и усечённых кубов можно замостить трёхмерное пространство без промежутков и наложений (см. иллюстрации).

Примечания

Усечённый куб, совершающий полный оборот шагами по 15°
Уличная скульптура в Вюрцбурге

Ссылки

Литература

  • М. Веннинджер. Модели многогранников. — Мир, 1974.
  • Многоугольники и многогранники // Энциклопедия элементарной математики. Книга четвёртая. Геометрия / Под ред. П. С. Александрова, А. И. Маркушевича, А. Я. Хинчина. — М.: Государственное издательство физико-математической литературы, 1963. — С. 382—447.
  • Л. А. Люстерник. Выпуклые фигуры и многогранники. — М.: Государственное издательство технико-теоретической литературы, 1956.
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9