Треугольный паркет
Треуго́льный парке́т (треугольный паркета́ж[1]) или треугольная мозаика — это замощение плоскости равными правильными треугольниками, расположенными сторона к стороне. Треугольная мозаика является двойственной шестиугольной мозаике — если соединить центры смежных треугольников, то проведённые отрезки дадут шестиугольную мозаику[1][2]. Символ Шлефли треугольного паркета — {3,6}, что означает, что в каждой вершине паркета сходятся 6 треугольников. Внутренний угол правильного треугольника равен 60 градусов, так что шесть треугольника в одной вершине дают вместе 360 градусов. Это одна из трёх правильных мозаик плоскости. Другие две мозаики — шестиугольный паркет и квадратный паркет. Английский математик Конвей называл мозаику deltille (дельта-мозаикой), поскольку она имеет форму греческой буквы дельта (Δ). Треугольную мозаику можно также назвать кис-шестиугольной мозаикой, если применить операцию kis[англ.], которая добавляет центральную вершину и треугольники, разбивая грани шестиугольной мозаики. Однородные раскраскиСуществует 9 различных однородных раскрасок треугольной мозаики (по цветам 6 треугольников вокруг вершины — 111111, 111112, 111212, 111213, 111222, 112122, 121212, 121213, 121314). Три из них можно получить их других путём замены цветов — 111212 и 111112 из 121213, комбинируя 1 и 3, в то время как 111213 получается из 121314[3]. Существует один класс архимедовой раскраски[англ.]*, 111112, (помечен *), в котором раскраска не является 1-однородной и содержит перемежающиеся ряды треугольников, в которых каждый третий выкрашен. Приведённая раскраска является 2-однородной и таких имеется бесконечно много, поскольку такие раскраски определяются произвольными сдвигами строк.
Решётка A2 и упаковка круговРасположение вершин[англ.] треугольной мозаики называется решёткой A2[4]. Она является 2-мерным вариантом симлектических сот[англ.]. Решётка A*
Вершины треугольной мозаики являются центрами наиболее плотной упаковки кругов [5]. Любой круг соприкасается с 6 другими кругами (контактное число). Плотность упаковки равна , это около 90,69 %. Поскольку объединение трёх решёток A2 снова будет решёткой A2, круги можно раскрасить в три цвета. Ячейкой диаграммы Вороного треугольной мозаики является шестиугольник, так что мозаика Вороного, шестиугольная мозаика, имеет прямое отношение к упаковке кругов.
Геометрические вариантыТреугольные мозаики могут быть идентичны {3,6} топологии правильной мозаики (6 треугольника в каждой вершине). Существует 5 вершинно транзитивных вариантов с одинаковыми гранями (транзитивных по граням[англ.]). С точки зрения симметрии все грани имеют одинаковый цвет, раскраска же на рисунках представляет положение в сетке[6].
Связанные многогранники и мозаикиПлоские мозаики связаны с многогранниками. Располагая меньше треугольников в каждой вершине, получим незаполненное пространство, что позволяет согнуть в фигуру в пирамиду. Отсюда можно получить правильные многогранники: пять, четыре и три треугольника в вершине дают икосаэдр, октаэдр и тетраэдр соответственно. Эта мозаика топологически связана (как часть последовательности) с правильными многогранниками с символами Шлефли {3,n}.
Эта мозаика топологически связана (как часть последовательности) с полуправильными многогранниками с конфигурацией граней Vn.6.6.
Построение Витхоффа из шестиугольных и треугольных мозаикПодобно однородным многогранникам существует восемь однородных мозаик, базирующихся на правильных шестиугольных мозаиках (или на двойственных треугольных мозаиках). Если нарисовать плитки исходных граней красным, исходные вершины (получившиеся на их месте многоугольники) жёлтым, а исходные рёбра (получившиеся на их месте многоугольники) синим, существует 8 форм, 7 из которых топологически различны. (Усечённая треугольная мозаика топологически идентична шестиугольной мозаике.)
Связанные правильные комплексные бесконечноугольникиСуществует 4 правильных комплексных апейрогона[англ.], имеющих те же вершины шестиугольной мозаики. Рёбра правильных комплексных апейрогонов могут содержать 2 и более вершин. Правильные апейрогоны p{q}r имеют ограничение: 1/p + 2/q + 1/r = 1. Рёбра имеют p вершин и вершинные фигуры являются r- угольниками [7]. Первый апейрогон состоит из 2-рёбер, следующие два имеют треугольные рёбра, последний имеет перекрывающиеся шестиугольные рёбра.
Другие треугольные мозаикиСуществуют также три мозаики Лавеса[англ.], состоящие из треугольников одного типа:
См. также
Примечания
Литература
Ссылки
|