Перестановочный многогранник (или пермутоэдр) порядка — это ()-мерный выпуклый многогранник, вложенный в -мерное евклидово пространство, который является выпуклой оболочкой точек, получающихся перестановками координат вектора .
Согласно Циглер, Гюнтер[1], перестановочный многогранник впервые появляется в работах Шутэ в 1911 году.
Сам термин «перестановочный многогранник» (точнее, его французский вариант «permutoèdre») впервые появился в статье Гуибуда (G.-T.Guibaud) и Розенштэхл, Пьер в 1963 году.
Предлагая его, авторы писали, что «permutoèdre» выглядит варварски, но легко запоминается и что они оставляют использование этого термина на усмотрение читателя.
Близким понятием является многогранник Биркгофа, определяемый как выпуклая оболочка матриц перестановок.
В более общей ситуации Боуман (V.-J.Bowman) в 1972 году использовал термин «перестановочный многогранник» («permutation polytope») для любого многогранника, вершины которого находятся во взаимно однозначном соответствии с перестановками некоторого множества.
Свойства
Перестановочный многогранник порядка n имеет n! вершин, каждая из которых соединена с n − 1 другими вершинами, так что общее число рёбер равно (n − 1)n!/2.
Каждое ребро имеет длину √2 и соединяет две вершины, получающиеся друг из друга перестановкой двух координат при условии, что значения этих координат различаются на единицу.[2]
Перестановочный многогранник имеет одну гипергрань для каждого непустого собственного подмножества S множества {1, 2, 3, …, n}, состоящую из всех вершин, у которых все координаты с номерами, вошедшими в S, имеют меньшие значения, чем все координаты с номерами, не вошедшими в S. Отсюда следует, что общее число гиперграней равно 2n − 2.
Перестановочный многогранник является вершинно-транзитивным, а именно: симметрическая группаSnдействует на множестве вершин перестановочного многогранника посредством перестановок координат.
Перестановочный многогранник порядка n полностью содержится в (n − 1)-мерной гиперплоскости, состоящей из всех точек, сумма координат которых равна
1 + 2 + … + n = n(n + 1)/2.
Более того, эта гиперплоскость может быть замощена (англ.) бесконечным количеством параллельных копий перестановочного многогранника. Каждая из этих копий отличается от исходного перестановочного многогранника на элемент некоторой (n − 1)-мерной решётки, образованной n-мерными векторами, все координаты которых целочисленные, их сумма равна нулю, причём все координаты принадлежат одному классу вычетов по модулю n:
x1 + x2 + … + xn = 0, x1 ≡ x2 ≡ … ≡ xn (mod n).
Например, перестановочный многогранник порядка 4, изображённый на рисунке, замощает 3-мерное пространство посредством параллельных переносов.
Здесь 3-мерное пространство рассматривается как аффинное подпространство 4-мерноего пространства R4 с координатами x, y, z, w, которое образовано четвёрками вещественных чисел, сумма которых равна 10, то есть
x + y + z + w = 10.
Легко проверить, что для каждого из следующих четырёх векторов
(1,1,1,−3), (1,1,−3,1), (1,−3,1,1) и (−3,1,1,1),
сумма координат равна нулю и все координаты сравнимы с 1 по модулю 4. Любые три из этих векторов порождают решётку параллельных переносов.
Le Conte de Poly-Barbut, Cl. (1990), "Le diagramme du treillis permutoèdre est intersection des diagrammes de deux produits directs d'ordres totaux", Mathématiques, Informatique et Sciences Humaines, 112: 49–53.
Schoute, Pieter Hendrik[in английский] (1911), "Analytic treatment of the polytopes regularly derived from the regular polytopes", Verhandelingen der Koninklijke Akademie van Wetenschappen te Amsterdam, 11 (3): 87 pp. Googlebook, 370—381
Ziegler, Günter M.[in английский] (1995), Lectures on Polytopes, Springer-Verlag, Graduate Texts in Mathematics 152
Гарбер, А.И.; Поярков, А.П. (2006), "О перестановочных многогранниках", Вестник МГУ, серия 1 (2): 3–8.