Share to: share facebook share twitter share wa share telegram print page

 

Правильный тетраэдр

Правильный тетраэдр
Тип правильный многогранник
Комбинаторика
Элементы
4 грани
6 рёбер
4 вершины
Χ = 2
Грани правильные треугольники
Конфигурация вершины 3.3.3
Двойственный многогранник тоже правильный тетраэдр
Классификация
Символ Шлефли {3,3}
Группа симметрии
Количественные данные
Длина ребра
Площадь поверхности
Объём
Телесный угол при вершине ср

Тетраэдр называется правильным, если все его грани — равносторонние треугольники.

У правильного тетраэдра все двугранные углы при рёбрах и все трёхгранные углы при вершинах равны.

Свойства правильного тетраэдра

Самодвойственность правильного тетраэдра.
  • Каждая его вершина является вершиной трех равносторонних треугольников. А значит, сумма плоских углов при каждой вершине будет равна .
  • В правильный тетраэдр можно вписать октаэдр, притом четыре из восьми граней октаэдра будут совмещены с серединными треугольниками четырёх граней тетраэдра, а все шесть вершин октаэдра будут совмещены с центрами шести рёбер тетраэдра.
    • Правильный тетраэдр с ребром состоит из одного вписанного октаэдра (в центре) с ребром и четырёх тетраэдров (по вершинам) с ребром .
  • Правильный тетраэдр можно вписать в куб, притом четыре вершины тетраэдра будут совмещены с четырьмя вершинами куба, а все шесть рёбер тетраэдра будут совмещены с диагоналями граней куба.
  • Объём правильного тетраэдра равен [1]
  • Площадь поверхности равна [1]
  • Радиус вписанной сферы равен [1]
  • Радиус описанной сферы равен [1]
  • Радиус полувписанной сферы равен [1]
  • Высота правильного тетраэдра равна = радиус вписанной сферы + радиус описанной сферы =
  • Угол между двумя гранями равен

Интересные факты

Середины граней правильного тетраэдра также образуют правильный тетраэдр.

Соотношения:

  • рёбер и высот правильных тетрадров, радиусов переписанных, описанных и писанных сфер соответственно равны ;
  • площадей поверхности равно ;
  • объёмов равно .

Примечания

  1. 1 2 3 4 5 Coxeter, 1948.

Литература

  • Harold Scott MacDonald Coxeter. Table I(i) // Regular Polytopes. — Methuen and Co., 1948.
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9