DE: Dronabinol: Anlage III, Δ9-THC: II, other isomers and their stereochemical variants: I. (Does not apply to THC as part of cannabis, which is regulated separately, see Cannabis (drug))
Tetrahydrocannabinol (THC) is a cannabinoid found in cannabis.[9] It is the principal psychoactive constituent of cannabis and one of at least 113 total cannabinoids identified on the plant. Although the chemical formula for THC (C21H30O2) describes multiple isomers,[10] the term THC usually refers to the delta-9-THC isomer with chemical name (−)-trans-Δ9-tetrahydrocannabinol. It is a colorless oil.
Chronic usage of THC may result in cannabinoid hyperemesis syndrome (CHS), a condition characterized by cyclic nausea, vomiting, and abdominal pain that may persist for months to years after discontinuation.[16]
Overdose
The median lethal dose of THC in humans is not fully known as there is conflicting evidence. A 1972 study gave up to 90 mg/kg of THC to dogs and monkeys without any lethal effects. Some rats died within 72 hours after a dose of up to 36 mg/kg.[18] A 2014 case study based on the toxicology reports and relative testimony in two separate cases gave the median lethal dose in humans at 30 mg/kg (2.1 grams THC for a person who weighs 70 kg; 154 lb; 11 stone), observing cardiovascular death in the one otherwise healthy subject of the two cases studied.[19] A different 1972 study gave the median lethal dose for intravenous THC in mice and rats at 30–40 mg/kg.[20]
For a review of the mechanisms behind endocannabinoid synaptic transmission, see Endocannabinoid system.
The actions of Δ9-THC result from its partial agonist activity at the cannabinoid receptorCB1 (Ki = 40.7 nM[23]), located mainly in the central nervous system, and the CB2 receptor (Ki = 36 nM[23]), mainly expressed in cells of the immune system.[24] The psychoactive effects of THC are primarily mediated by the activation of (mostly G-coupled) cannabinoid receptors, which result in a decrease in the concentration of the second messenger molecule cAMP through inhibition of adenylate cyclase.[25] The presence of these specialized cannabinoid receptors in the brain led researchers to the discovery of endocannabinoids, such as anandamide and 2-arachidonoyl glyceride (2-AG).[citation needed]
THC is a lipophilic molecule[26] and may bind non-specifically to a variety of entities in the brain and body, such as adipose tissue (fat).[27][28] THC, as well as other cannabinoids that contain a phenol group, possess mild antioxidant activity sufficient to protect neurons against oxidative stress, such as that produced by glutamate-induced excitotoxicity.[24]
THC targets receptors in a manner far less selective than endocannabinoid molecules released during retrograde signaling, as the drug has a relatively low cannabinoid receptor affinity. THC is also limited in its efficacy compared to other cannabinoids due to its partial agonistic activity, as THC appears to result in greater downregulation of cannabinoid receptors than endocannabinoids. Furthermore, in populations of low cannabinoid receptor density, THC may even act to antagonize endogenous agonists that possess greater receptor efficacy. However while THC's pharmacodynamic tolerance may limit the maximal effects of certain drugs, evidence suggests that this tolerance mitigates undesirable effects, thus enhancing the drug's therapeutic window.[29]
Recently, it has been shown that THC is also a partial autotaxin inhibitor, with an apparent IC50 of 407 ± 67 nM for the ATX-gamma isoform.[30] THC was also co-crystallized with autotaxin, deciphering the binding interface of the complex. These results might explain some of the effects of THC on inflammation and neurological diseases, since autotaxin is responsible of LPA generation, a key lipid mediator involved in numerous diseases and physiological processes. However, clinical trials need to be performed in order to assess the importance of ATX inhibition by THC during medicinal cannabis consumption.
Pharmacokinetics
Absorption
With oral administration of a single dose, THC is almost completely absorbed by the gastrointestinal tract.[21] However, due to first-pass metabolism in the liver and the high lipid solubility of THC, only about 5 to 20% reaches circulation.[3][21] Following oral administration, concentrations of THC and its major active metabolite11-hydroxy-THC (11-OH-THC) peak after 0.5 to 4hours, with median time to peak of 1.0 to 2.5hours at different doses.[21][3] In some cases, peak levels may not occur for as long as 6hours.[3] Concentrations of THC and 11-hydroxy-THC in the circulation are approximately equal with oral administration.[21] There is a slight increase in dose proportionality in terms of peak and area-under-the-curve levels of THC with increasing oral doses over a range of 2.5 to 10mg.[21] A high-fat meal delays time to peak concentrations of oral THC by 4hours on average and increases area-under-the-curve exposure by 2.9-fold, but peak concentrations are not significantly altered.[21] A high-fat meal additionally increases absorption of THC via the lymphatic system and allows it to bypass first-pass metabolism.[31] Consequently, a high-fat meal increases levels of 11-hydroxy-THC by only 25% and most of the increase in bioavailability is due to increased levels of THC.[31]
The bioavailability of THC when smoking or inhaling is approximately 25%, with a range of 2% to 56% (although most commonly between 10 and 35%).[22][32][3] The large range and marked variability between individuals is due to variation in factors including product matrix, ignition temperature, and inhalational dynamics (e.g., number, duration, and intervals of inhalations, breath hold time, depth and volume of inhalations, size of inhaled particles, deposition site in the lungs).[22][32] THC is detectable within seconds with inhalation and peak levels of THC occur after 3 to 10minutes.[3][32] Smoking or inhaling THC results in greater blood levels of THC and its metabolites and a much faster onset of action than oral administration of THC.[22][32] Inhalation of THC bypasses the first-pass metabolism that occurs with oral administration.[22] The bioavailability of THC with inhalation is increased in heavy users.[3]
Transdermal administration of THC is limited by its extreme water insolubility.[22] Efficient skin transport can only be obtained with permeation enhancement.[22] Transdermal administration of THC, as with inhalation, avoids the first-pass metabolism that occurs with oral administration.[22]
Distribution
The volume of distribution of THC is large and is approximately 10L/kg (range 4–14L/kg), which is due to its high lipid solubility.[21][22][32] The plasma protein binding of THC and its metabolites is approximately 95 to 99%, with THC bound mainly to lipoproteins and to a lesser extent albumin.[21][3] THC is rapidly distributed into well-vascularized organs such as lung, heart, brain, and liver, and is subsequently equilibrated into less vascularized tissue.[22][32] It is extensively distributed into and sequestered by fat tissue due to its high lipid solubility, from which it is slowly released.[31][22][32] THC is able to cross the placenta and is excreted in human breast milk.[22][3]
More than 55% of THC is excreted in the feces and approximately 20% in the urine. The main metabolite in urine is the ester of glucuronic acid and 11-OH-THC and free THC-COOH. In the feces, mainly 11-OH-THC was detected.[36]
Estimates of the elimination half-life of THC are variable.[22] THC was reported to have a fast initial half-life of 6minutes and a long terminal half-life of 22hours in a population pharmacokinetic study.[22][32] Conversely, the Food and Drug Administration label for dronabinol reports an initial half-life of 4hours and a terminal half-life of 25 to 36hours.[21] Many studies report an elimination half-life of THC in the range of 20 to 30hours.[3] 11-Hydroxy-THC appears to have a similar terminal half-life to that of THC, for instance 12 to 36hours relative to 25 to 36hours in one study.[3] The elimination half-life of THC is longer in heavy users.[22] This may be due to slow redistribution from deep compartments such as fatty tissues, where THC accumulates with regular use.[22]
THC and its 11-OH-THC and THC-COOH metabolites can be detected and quantified in blood, urine, hair, oral fluid or sweat using a combination of immunoassay and chromatographic techniques as part of a drug use testing program or in a forensic investigation.[57][58][59] There is ongoing research to create devices capable of detecting THC in breath.[60][61]
Regulation
THC, along with its double bond isomers and their stereoisomers,[62] is one of only three cannabinoids scheduled by the UN Convention on Psychotropic Substances (the other two are dimethylheptylpyran and parahexyl). It was listed under Schedule I in 1971, but reclassified to Schedule II in 1991 following a recommendation from the WHO. Based on subsequent studies, the WHO has recommended the reclassification to the less-stringent Schedule III.[63] Cannabis as a plant is scheduled by the Single Convention on Narcotic Drugs (Schedule I and IV). It is specifically still listed under Schedule I by US federal law[64] under the Controlled Substances Act for having "no accepted medical use" and "lack of accepted safety". However, dronabinol, a pharmaceutical form of THC, has been approved by the FDA as an appetite stimulant for people with AIDS and an antiemetic for people receiving chemotherapy under the trade names Marinol and Syndros.[65]
As of 2023, 38 states, four territories, and the District of Columbia in the United States allow medical use of cannabis (in which THC is the primary psychoactive component), with the exception of Georgia, Idaho, Indiana, Iowa, Kansas, Nebraska, North Carolina, South Carolina, Tennessee, Texas, Wisconsin, and Wyoming.[68] As of 2022, the U.S. federal government maintains cannabis as a schedule I controlled substance, while dronabinol is classified as Schedule III in capsule form (Marinol) and Schedule II in liquid oral form (Syndros).[69][70]
The status of THC as an illegal drug in most countries imposes restrictions on research material supply and funding, such as in the United States where the National Institute on Drug Abuse and Drug Enforcement Administration continue to control the sole federally-legal source of cannabis for researchers. Despite an August 2016 announcement that licenses would be provided to growers for supplies of medical marijuana, no such licenses were ever issued, despite dozens of applications.[71] Although cannabis is legalized for medical uses in more than half of the states of the United States, no products have been approved for federal commerce by the Food and Drug Administration, a status that limits cultivation, manufacture, distribution, clinical research, and therapeutic applications.[72]
In April 2014, the American Academy of Neurology found evidence supporting the effectiveness of the cannabis extracts in treating certain symptoms of multiple sclerosis and pain, but there was insufficient evidence to determine effectiveness for treating several other neurological diseases.[73] A 2015 review confirmed that medical marijuana was effective for treating spasticity and chronic pain, but caused numerous short-lasting adverse events, such as dizziness.[74]
Multiple sclerosis symptoms
Spasticity. Based on the results of 3 high quality trials and 5 of lower quality, oral cannabis extract was rated as effective, and THC as probably effective, for improving people's subjective experience of spasticity. Oral cannabis extract and THC both were rated as possibly effective for improving objective measures of spasticity.[73][74]
Centrally mediated pain and painful spasms. Based on the results of 4 high quality trials and 4 low quality trials, oral cannabis extract was rated as effective, and THC as probably effective in treating central pain and painful spasms.[73]
Bladder dysfunction. Based on a single high quality study, oral cannabis extract and THC were rated as probably ineffective for controlling bladder complaints in multiple sclerosis[73]
Neurodegenerative disorders
Huntington disease. No reliable conclusion could be drawn regarding the effectiveness of THC or oral cannabis extract in treating the symptoms of Huntington disease as the available trials were too small to reliably detect any difference[73]
Parkinson's disease. Based on a single study, oral CBD extract was rated probably ineffective in treating levodopa-induced dyskinesia in Parkinson's disease.[73]
Alzheimer's disease. A 2009 Cochrane Review found insufficient evidence to conclude whether cannabis products have any utility in the treatment of Alzheimer's disease.[75]
Other neurological disorders
Tourette syndrome. The available data was determined to be insufficient to allow reliable conclusions to be drawn regarding the effectiveness of oral cannabis extract or THC in controlling tics.[73]
Cervical dystonia. Insufficient data was available to assess the effectiveness of oral cannabis extract of THC in treating cervical dystonia.[73]
Potential for toxicity
Preliminary research indicates that prolonged exposure to high doses of THC may interfere with chromosomal stability, which may be hereditary as a factor affecting cell instability and cancer risk. The carcinogenicity of THC in the studied populations of so-called "heavy users" remains dubious due to various confounding variables, most significantly concurrent tobacco use.[76]
^The Royal Pharmaceutical Society of Great Britain (2006). "Cannabis". In Sweetman SC (ed.). Martindale: The Complete Drug Reference: Single User (35th ed.). Pharmaceutical Press. ISBN978-0-85369-703-9.[page needed]
^"Tetrahydrocannabinol – Compound Summary". National Center for Biotechnology Information. PubChem. Archived from the original on 12 January 2014. Retrieved 12 January 2014. Dronabinol has a large apparent volume of distribution, approximately 10 L/kg, because of its lipid solubility. The plasma protein binding of dronabinol and its metabolites is approximately 97%.
^Gaoni Y, Mechoulam R (April 1964). "Isolation, Structure, and Partial Synthesis of an Active Constituent of Hashish". Journal of the American Chemical Society. 86 (8): 1646–47. Bibcode:1964JAChS..86.1646G. doi:10.1021/ja01062a046.
^Adams R, Cain CK, McPhee WD, Wearn RB (August 1941). "Structure of Cannabidiol. XII. Isomerization to Tetrahydrocannabinols". Journal of the American Chemical Society. 63 (8): 2209–13. Bibcode:1941JAChS..63.2209A. doi:10.1021/ja01853a052.
^ abGarrett ER, Hunt CA (July 1974). "Physiochemical properties, solubility, and protein binding of delta9-tetrahydrocannabinol". Journal of Pharmaceutical Sciences. 63 (7): 1056–64. doi:10.1002/jps.2600630705. PMID4853640.
^Thompson GR, Rosenkrantz H, Schaeppi UH, Braude MC (July 1973). "Comparison of acute oral toxicity of cannabinoids in rats, dogs and monkeys". Toxicology and Applied Pharmacology. 25 (3): 363–72. Bibcode:1973ToxAP..25..363T. doi:10.1016/0041-008X(73)90310-4. PMID4199474. In dogs and monkeys, single oral doses of Δ9-THC and Δ8-THC between 3000 and 9000/mg/kg were nonlethal.
^Hartung B, Kauferstein S, Ritz-Timme S, Daldrup T (April 2014). "Sudden unexpected death under acute influence of cannabis". Forensic Science International. 237: e11 –e13. doi:10.1016/j.forsciint.2014.02.001. PMID24598271.
^Ashton CH (February 2001). "Pharmacology and effects of cannabis: a brief review". The British Journal of Psychiatry. 178 (2): 101–06. doi:10.1192/bjp.178.2.101. PMID11157422. Because they are extremely lipid soluble, cannabinoids accumulate in fatty tissues, reaching peak concentrations in 4–5 days. They are then slowly released back into other body compartments, including the brain. ... Within the brain, THC and other cannabinoids are differentially distributed. High concentrations are reached in neocortical, limbic, sensory and motor areas.
^Qian Y, Gurley BJ, Markowitz JS (2019). "The Potential for Pharmacokinetic Interactions Between Cannabis Products and Conventional Medications". Journal of Clinical Psychopharmacology. 39 (5): 462–71. doi:10.1097/JCP.0000000000001089. PMID31433338. S2CID201118659.
^Watanabe K, Yamaori S, Funahashi T, Kimura T, Yamamoto I (March 2007). "Cytochrome P450 enzymes involved in the metabolism of tetrahydrocannabinols and cannabinol by human hepatic microsomes". Life Sciences. 80 (15): 1415–19. doi:10.1016/j.lfs.2006.12.032. PMID17303175.
^Huestis MA (2005). "Pharmacokinetics and Metabolism of the Plant Cannabinoids, Δ9-Tetrahydrocannabinol, Cannabidiol and Cannabinol". Handbook of Experimental Pharmacology. 168 (168): 657–90. doi:10.1007/3-540-26573-2_23. ISBN978-3-540-22565-2. PMID16596792.
^Pate DW (1994). "Chemical ecology of Cannabis". Journal of the International Hemp Association. 2 (29): 32–37. Archived from the original on 2018-12-21. Retrieved 2017-12-09.
^Mechoulam R, Gaoni Y (July 1965). "A Total Synthesis of Dl-Delta-1-Tetrahydrocannabinol, the Active Constituent of Hashish". Journal of the American Chemical Society. 87 (14): 3273–75. Bibcode:1965JAChS..87.3273M. doi:10.1021/ja01092a065. PMID14324315.
^Baker PB, Taylor BJ, Gough TA (June 1981). "The tetrahydrocannabinol and tetrahydrocannabinolic acid content of cannabis products". The Journal of Pharmacy and Pharmacology. 33 (6): 369–72. doi:10.1111/j.2042-7158.1981.tb13806.x. PMID6115009. S2CID30412893.
^US 2419937, Roger A, "Marihuana active compounds", issued 6 May 1947, assigned to Individual
^Adams R, Hunt M, Clark JH (1940). "Structure of Cannabidiol, a Product Isolated from the Marihuana Extract of Minnesota Wild Hemp". Journal of the American Chemical Society. 62 (1): 196–200. Bibcode:1940JAChS..62..196A. doi:10.1021/ja01858a058.
^Gaoni Y, Mechoulam R (1964). "Isolation, structure and partial synthesis of an active constituent of hashish". Journal of the American Chemical Society. 86 (8): 1646–47. Bibcode:1964JAChS..86.1646G. doi:10.1021/ja01062a046.
^Mazzoccanti G, Ismail OH, D'Acquarica I, Villani C, Manzo C, Wilcox M, et al. (November 2017). "Cannabis through the looking glass: chemo- and enantio-selective separation of phytocannabinoids by enantioselective ultra high performance supercritical fluid chromatography". Chemical Communications. 53 (91): 12262–65. doi:10.1039/C7CC06999E. hdl:11573/1016698. PMID29072720.
^"Drug Schedules; Schedule 1". United States Drug Enforcement Administration. US Drug Enforcement Administration, Department of Justice. 1 December 2017. Archived from the original on 7 May 2021. Retrieved 14 January 2018.
^"Marinol (Dronabinol)"(PDF). US Food and Drug Administration. September 2004. Archived(PDF) from the original on 10 February 2017. Retrieved 14 January 2018.
^"State Medical Cannabis Laws". National Conference of State Legislatures. 3 February 2022. Archived from the original on 11 December 2018. Retrieved 10 December 2022.