Memantine, sold under the brand name Namenda among others, is a medication used to slow the progression of moderate-to-severe Alzheimer's disease.[10][11][8] It is taken by mouth.[10][8]
Memantine was first discovered in 1963.[8][12][13] It was approved for medical use in Germany in 1989, in the European Union in 2002, and in the United States in 2003.[13][10][14] It is available as a generic medication.[11] In 2022, it was the 150th most commonly prescribed medication in the United States, with more than 3million prescriptions.[15][16]
Medical uses
Alzheimer's disease and dementia
Memantine is used to treat moderate-to-severe Alzheimer's disease, especially for people who are intolerant of or have a contraindication to AChE (acetylcholinesterase)inhibitors.[17][18] One guideline recommends memantine or an AChE inhibitor be considered in people in the early-to-mid stage of dementia.[19]
Memantine has been associated with a modest improvement;[20] with small positive effects on cognition, mood, behavior, and the ability to perform daily activities in moderate-to-severe Alzheimer's disease.[21][22] There does not appear to be any benefit in mild disease.[23]
Memantine when added to donepezil in those with moderate-to-severe dementia resulted in "limited improvements" in a 2017 review.[24] The UK National Institute for Clinical Excellence (NICE) issued guidance in 2018 recommending consideration of the combination of memantine with donepezil in those with moderate-to-severe dementia.[25]
Radiation therapy
Memantine has been recommended for use by professional organization consensus to prevent neurocognitive decline after whole brain radiotherapy.[26]
Adverse effects
Memantine is, in general, well tolerated.[20] Common adverse drug reactions (≥1% of people) include confusion, dizziness, drowsiness, headache, insomnia, agitation, and/or hallucinations. Less common adverse effects include vomiting, anxiety, hypertonia, cystitis, and increased libido.[20][27]
Memantine is a low-affinity voltage-dependent uncompetitiveantagonist at glutamatergic NMDA receptors.[32][33] By binding to the NMDA receptor with a higher affinity than Mg2+ ions, memantine is able to inhibit the prolonged influx of Ca2+ ions, particularly from extrasynaptic receptors, which forms the basis of neuronal excitotoxicity. The low affinity, uncompetitive nature, and rapid off-rate kinetics of memantine at the level of the NMDA receptor channel, however, preserves the function of the receptor at synapses, as it can still be activated by physiological release of glutamate following depolarization of the postsynaptic neuron.[34][35][36] The interaction of memantine with NMDA receptors plays a major role in the symptomatic improvement that the drug produces in Alzheimer's disease. However, there is no evidence as yet that the ability of memantine to protect against extrasynaptic NMDA receptor-mediated excitotoxicity has a disease-modifying effect in Alzheimer's disease, although this has been suggested in animal models.[35]
Memantine acts as a non-competitive antagonist of different neuronal nicotinic acetylcholine receptors (nAChRs) at potencies possibly similar to the NMDA receptor and 5-HT3 receptor, but this is difficult to ascertain with accuracy because of the rapid desensitization of nAChR responses in these experiments. It can be noted that memantine is an antagonist at α7 nAChR, which may contribute to initial worsening of cognitive function during early memantine treatment. α7 nAChR upregulates quickly in response to antagonism, which could explain the cognitive-enhancing effects of chronic memantine treatment.[38][39] It has been shown that the number of nicotinic receptors in the brain are reduced in Alzheimer's disease, even in the absence of a general decrease in the number of neurons, and nicotinic receptoragonists are viewed as interesting targets for anti-Alzheimer drugs.[40]
Dopaminergic
Memantine was shown in a study to act as an agonist at the dopamineD2high receptor with equal or slightly higher affinity than to the NMDA receptors.[41] However, the relevance of this action may be negligible, as studies have shown very low affinity for binding to D2 receptors in general.[42]
Sigmaergic
Memantine acts as an agonist of the sigmaσ1 receptor with low affinity (Ki = 2.6μM).[43] The consequences of this activity are unclear (as the role of sigma receptors in general is currently not very well understood). Due to this low affinity, therapeutic concentrations of memantine are most likely too low to have any sigmaergic effect as a typical therapeutic dose is 20 mg. However, excessive doses of memantine taken for recreational purposes many times greater than prescribed doses may indeed activate this receptor.[44]
The oralbioavailability of memantine is 100%.[8][9]Time to peak levels of memantine is 3 to 7hours.[8][9]Food has no influence on the rate of absorption.[8][9] Memantine exposure is linear over a dose range of 10 to 40mg.[8]Peak levels after a single 20mg dose were found to be 24 to 29μg/L (0.13–0.16μmol/L or μM).[8]Steady-state levels of memantine with 20mg/day are in the range of 0.5 to 1.0μM.[9]
It was not discovered to act as an NMDA receptor antagonist until 1989, after clinical trials had initiated.[8][12][50] Prior to this, it was theorized to directly and/or indirectly modulate the dopaminergic, noradrenergic, and serotonergic systems.[12][51][52][53] However, these actions were later realized to occur at 100-fold higher concentrations than those achieved therapeutically and hence are unlikely to be involved in its effects.[12][51][53]
In the United States, some CNS activities were discovered at Children's Hospital of Boston in 1990, and Children's licensed patents covering uses of memantine outside the field of ophthalmology to Neurobiological Technologies (NTI) in 1995.[54] In 1998, NTI amended its agreement with Children's to allow Merz to take over development.[55]
In 2000, Merz partnered with Forest to develop the drug for Alzheimer's disease in the United States under the brand name Namenda.[8][14] In 2000, Merz partnered with Suntory for the Japanese market and with Lundbeck for other markets including Europe;[56] the drug was originally marketed by Lundbeck under the name Ebixa.[14] Memantine was approved in the European Union in 2002 and in the United States in 2003.[8][13]
Sales of the drug reached $1.8 billion for 2014.[8][57] The cost of Namenda was $269 to $489 a month in 2012.[58]
In February 2014, as the July 2015 patent expiration for memantine neared, Actavis, which had acquired Forest, announced that it was launching an extended release (XR) form of memantine that could be taken once a day instead of twice a day as needed with the then-current "immediate release" (IR) version, and that it intended to stop selling the IR version in August 2014 and withdraw the marketing authorization. This is a tactic to thwart generic competition called product hopping. However the supply of the XR version ran short, so Actavis extended the deadline until the fall. In September 2014 the attorney general of New York, Eric Schneiderman, filed a lawsuit to compel Actavis to keep selling the IR version on the basis of antitrust law.[59][60]
In December 2014, a judge granted New York State its request and issued an injunction, preventing Actavis from withdrawing the IR version until generic versions could launch. Actavis appealed and in May a panel of the Second Circuit Court of Appeals upheld the injunction, and in June Actavis asked that its case be heard by the full Second Circuit panel.[61][62] In August 2015, Actavis' request was denied.[63]
Society and culture
Recreational use
Recreational use of memantine at supratherapeutic doses has been reported.[64] It is a weak NMDA receptor antagonist and is reported to produce dissociative and phencyclidine (PCP)-like effects in animals and humans at sufficiently high doses.[64][65][66] Even therapeutic doses have been found to produce mild dissociative-like effects in clinical studies.[64] In any case, the very long duration of action of memantine (>40hours) has likely limited its misuse potential.[64] Recreational use of the related drug amantadine has similarly been reported.[64]
A study examining self-reported use of memantine on the social network Reddit showed that the drug was used both recreationally and as a nootropic, but also that it was misused in various illnesses as self-medication without strong scientific basis.[67]
There are likewise limited data to support memantine in the treatment of schizophrenia based on systematic reviews and meta-analyses.[75][76] However, a 2019 systematic review and meta-analysis reported that memantine was effective in the treatment of the negative and cognitive symptoms of schizophrenia with medium to large effect sizes.[77]
Parkinson's disease
Memantine has been studied in the treatment of Parkinson's disease since the early 1970s.[13][12][78][79][80] Whereas the related drug amantadine is approved for the treatment of Parkinson's disease and has been since the early 1970s,[46] memantine is not approved for the treatment of Parkinson's disease as of 2024.[81] However, it has been said that memantine, along with amantadine, has been widely used as an antiparkinsonian agent since at least 1994.[78]
Although amantadine and memantine have fairly similar pharmacology, it has been said that memantine does not share the antidyskinetic effects of amantadine.[82][83] However, findings are conflicting, and some data suggest that memantine may also have antidyskinetic effects.[84][85][86] Similarly to amantadine and dopamine receptor agonists, memantine reverses haloperidol-induced catalepsy and monoamine depletion-induced sedation in animals.[82][87] Memantine has been found to reduce bradykinesia and resting tremor in people with Parkinson's disease.[82][83] Memantine and amantadine are said to have moderate anti-akinetic effects in the treatment of Parkinson's disease.[78][88] The doses of memantine used for Parkinson's disease are about 5- to 10-fold lower than those of amantadine, which has been attributed to greater potency of memantine.[78]
^ abcdefghijklmnopqrstuvwxySchmitt F, Ryan M, Cooper G (February 2007). "A brief review of the pharmacologic and therapeutic aspects of memantine in Alzheimer's disease". Expert Opin Drug Metab Toxicol. 3 (1): 135–141. doi:10.1517/17425255.3.1.135. PMID17269900.
^ abcdefHerrmann N, Li A, Lanctôt K (April 2011). "Memantine in dementia: a review of the current evidence". Expert Opinion on Pharmacotherapy. 12 (5): 787–800. doi:10.1517/14656566.2011.558006. PMID21385152.
^van Dyck CH, Tariot PN, Meyers B, Malca Resnick E (2007). "A 24-week randomized, controlled trial of memantine in patients with moderate-to-severe Alzheimer disease". Alzheimer Disease and Associated Disorders. 21 (2): 136–143. doi:10.1097/WAD.0b013e318065c495. PMID17545739. S2CID25621202.
^Schneider LS, Dagerman KS, Higgins JP, McShane R (August 2011). "Lack of evidence for the efficacy of memantine in mild Alzheimer disease". Archives of Neurology. 68 (8): 991–998. doi:10.1001/archneurol.2011.69. PMID21482915. S2CID18870666.
^ abMorris H, Wallach J (2014). "From PCP to MXE: a comprehensive review of the non-medical use of dissociative drugs". Drug Testing and Analysis. 6 (7–8): 614–632. doi:10.1002/dta.1620. PMID24678061.
^Swedberg MD, Ellgren M, Raboisson P (April 2014). "mGluR5 antagonist-induced psychoactive properties: MTEP drug discrimination, a pharmacologically selective non-NMDA effect with apparent lack of reinforcing properties". The Journal of Pharmacology and Experimental Therapeutics. 349 (1): 155–164. doi:10.1124/jpet.113.211185. PMID24472725. S2CID787751.
^ abParsons CG, Stöffler A, Danysz W (November 2007). "Memantine: a NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system--too little activation is bad, too much is even worse". Neuropharmacology. 53 (6): 699–723. doi:10.1016/j.neuropharm.2007.07.013. PMID17904591. S2CID6599658.
^Lipton SA (October 2007). "Pathologically activated therapeutics for neuroprotection". Nature Reviews. Neuroscience. 8 (10): 803–808. doi:10.1038/nrn2229. PMID17882256. S2CID34931289.
^Rammes G, Rupprecht R, Ferrari U, Zieglgänsberger W, Parsons CG (June 2001). "The N-methyl-D-aspartate receptor channel blockers memantine, MRZ 2/579 and other amino-alkyl-cyclohexanes antagonise 5-HT(3) receptor currents in cultured HEK-293 and N1E-115 cell systems in a non-competitive manner". Neuroscience Letters. 306 (1–2): 81–84. doi:10.1016/S0304-3940(01)01872-9. PMID11403963. S2CID9655208.
^Buisson B, Bertrand D (March 1998). "Open-channel blockers at the human alpha4beta2 neuronal nicotinic acetylcholine receptor". Molecular Pharmacology. 53 (3): 555–563. doi:10.1124/mol.53.3.555. PMID9495824. S2CID5865674.
^Aracava Y, Pereira EF, Maelicke A, Albuquerque EX (March 2005). "Memantine blocks alpha7* nicotinic acetylcholine receptors more potently than n-methyl-D-aspartate receptors in rat hippocampal neurons". The Journal of Pharmacology and Experimental Therapeutics. 312 (3): 1195–1205. doi:10.1124/jpet.104.077172. PMID15522999. S2CID17585264.
^Peeters M, Romieu P, Maurice T, Su TP, Maloteaux JM, Hermans E (April 2004). "Involvement of the sigma 1 receptor in the modulation of dopaminergic transmission by amantadine". The European Journal of Neuroscience. 19 (8): 2212–2220. doi:10.1111/j.0953-816X.2004.03297.x. PMID15090047. S2CID19479968.
^Morozov IS, Ivanova IA, Lukicheva TA (2001). "[Actoprotector and adaptogen properties of adamantane derivatives (a review)". Pharmaceutical Chemistry Journal. 35 (5): 235–238. doi:10.1023/A:1011905302667.
^Gerzon K, Krumkalns EV, Brindle RL, Marshall FJ, Root MA (November 1963). "The adamantyl group in medicinal agents. I. Hypoglycemic N-arylsulfonyl-N'-adamantylureas". J Med Chem. 6 (6): 760–763. doi:10.1021/jm00342a029. PMID14184942.
^Bormann J (August 1989). "Memantine is a potent blocker of N-methyl-D-aspartate (NMDA) receptor channels". Eur J Pharmacol. 166 (3): 591–592. doi:10.1016/0014-2999(89)90385-3. PMID2553441.
^ abParsons CG, Danysz W, Quack G (June 1999). "Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist--a review of preclinical data". Neuropharmacology. 38 (6): 735–767. doi:10.1016/s0028-3908(99)00019-2. PMID10465680.
^Wesemann W, Sontag KH, Maj J (1983). "Pharmakodynamik und Pharmakokinetik des Memantin" [Pharmacodynamics and pharmacokinetics of memantine]. Arzneimittelforschung (in German). 33 (8): 1122–1134. PMID6357202.
^ abJackisch R, Link T, Neufang B, Koch R (1992). "Studies on the mechanism of action of the antiparkinsonian drugs memantine and amantadine: no evidence for direct dopaminomimetic or antimuscarinic properties". Arch Int Pharmacodyn Ther. 320: 21–42. PMID1284458.
^Delevett P (9 January 2000). "Cash is king, focus is queen". Silicon Valley Business Journal. Archived from the original on 5 February 2017. Retrieved 5 February 2017.
^ abcdeMorris H, Wallach J (2014). "From PCP to MXE: a comprehensive review of the non-medical use of dissociative drugs". Drug Test Anal. 6 (7–8): 614–632. doi:10.1002/dta.1620. PMID24678061.
^Heal DJ, Gosden J, Smith SL (November 2018). "Evaluating the abuse potential of psychedelic drugs as part of the safety pharmacology assessment for medical use in humans". Neuropharmacology. 142: 89–115. doi:10.1016/j.neuropharm.2018.01.049. PMID29427652.
^Natter J, Michel B (September 2020). "Memantine misuse and social networks: A content analysis of Internet self-reports". Pharmacoepidemiology and Drug Safety. 29 (9): 1189–1193. doi:10.1002/pds.5070. PMID32602152. S2CID220270495.
^ abcZdanys K, Tampi RR (August 2008). "A systematic review of off-label uses of memantine for psychiatric disorders". Prog Neuropsychopharmacol Biol Psychiatry. 32 (6): 1362–1374. doi:10.1016/j.pnpbp.2008.01.008. PMID18262702.
^Bartoli F, Cavaleri D, Bachi B, Moretti F, Riboldi I, Crocamo C, et al. (November 2021). "Repurposed drugs as adjunctive treatments for mania and bipolar depression: A meta-review and critical appraisal of meta-analyses of randomized placebo-controlled trials". Journal of Psychiatric Research. 143: 230–238. doi:10.1016/j.jpsychires.2021.09.018. PMID34509090. S2CID237485915.
^Hsu TW, Chu CS, Ching PY, Chen GW, Pan CC (June 2022). "The efficacy and tolerability of memantine for depressive symptoms in major mental diseases: A systematic review and updated meta-analysis of double-blind randomized controlled trials". J Affect Disord. 306: 182–189. doi:10.1016/j.jad.2022.03.047. PMID35331821.
^Andrade C (2017). "Memantine as an Augmentation Treatment for Schizophrenia: Limitations of Meta-Analysis for Evidence-Based Evaluation of Research". J Clin Psychiatry. 78 (9): e1307 –e1309. doi:10.4088/JCP.17f11998. PMID29178686.
^Zheng W, Zhu XM, Zhang QE, Cai DB, Yang XH, Zhou YL, et al. (July 2019). "Adjunctive memantine for major mental disorders: A systematic review and meta-analysis of randomized double-blind controlled trials". Schizophr Res. 209: 12–21. doi:10.1016/j.schres.2019.05.019. PMID31164254.
^Fischer PA, Jacobi P, Schneider E, Schönberger B (July 1977). "Die Wirkung intravenöser Gaben von Memantin bei Parkinson-Kranken" [Effects of intravenous administration of memantine in parkinsonian patients]. Arzneimittelforschung (in German). 27 (7): 1487–1489. PMID332193.
^Schneider E, Fischer PA, Clemens R, Balzereit F, Fünfgeld EW, Haase HJ (June 1984). "[Effects of oral memantine administration on Parkinson symptoms. Results of a placebo-controlled multicenter study]". Dtsch Med Wochenschr (in German). 109 (25): 987–990. doi:10.1055/s-2008-1069311. PMID6734455.
^ abMerello M, Nouzeilles MI, Cammarota A, Leiguarda R (1999). "Effect of memantine (NMDA antagonist) on Parkinson's disease: a double-blind crossover randomized study". Clin Neuropharmacol. 22 (5): 273–276. PMID10516877.
^Gonzalez-Latapi P, Bhowmick SS, Saranza G, Fox SH (October 2020). "Non-Dopaminergic Treatments for Motor Control in Parkinson's Disease: An Update". CNS Drugs. 34 (10): 1025–1044. doi:10.1007/s40263-020-00754-0. PMID32785890.
^Vidal EI, Fukushima FB, Valle AP, Villas Boas PJ (January 2013). "Unexpected improvement in levodopa-induced dyskinesia and on-off phenomena after introduction of memantine for treatment of Parkinson's disease dementia". J Am Geriatr Soc. 61 (1): 170–172. doi:10.1111/jgs.12058. PMID23311565.
^Danysz W, Gossel M, Zajaczkowski W, Dill D, Quack G (1994). "Are NMDA antagonistic properties relevant for antiparkinsonian-like activity in rats?--case of amantadine and memantine". J Neural Transm Park Dis Dement Sect. 7 (3): 155–166. doi:10.1007/BF02253435. PMID7710668.
^Rabey JM, Nissipeanu P, Korczyn AD (1992). "Efficacy of memantine, an NMDA receptor antagonist, in the treatment of Parkinson's disease". J Neural Transm Park Dis Dement Sect. 4 (4): 277–282. doi:10.1007/BF02260076. PMID1388698.
^Wang HF, Yu JT, Tang SW, Jiang T, Tan CC, Meng XF, et al. (February 2015). "Efficacy and safety of cholinesterase inhibitors and memantine in cognitive impairment in Parkinson's disease, Parkinson's disease dementia, and dementia with Lewy bodies: systematic review with meta-analysis and trial sequential analysis". J Neurol Neurosurg Psychiatry. 86 (2): 135–143. doi:10.1136/jnnp-2014-307659. PMID24828899.
^Chong TT, Husain M (2016). "The role of dopamine in the pathophysiology and treatment of apathy". Motivation - Theory, Neurobiology and Applications. Progress in Brain Research. Vol. 229. pp. 389–426. doi:10.1016/bs.pbr.2016.05.007. ISBN978-0-444-63701-7. PMID27926449. {{cite book}}: |journal= ignored (help)
^Sepehry AA, Sarai M, Hsiung GR (May 2017). "Pharmacological Therapy for Apathy in Alzheimer's Disease: A Systematic Review and Meta-Analysis". Can J Neurol Sci. 44 (3): 267–275. doi:10.1017/cjn.2016.426. PMID28148339.
^Harrison F, Aerts L, Brodaty H (November 2016). "Apathy in Dementia: Systematic Review of Recent Evidence on Pharmacological Treatments". Curr Psychiatry Rep. 18 (11): 103. doi:10.1007/s11920-016-0737-7. PMID27726067.
^Andrade C (February 2022). "Methylphenidate and Other Pharmacologic Treatments for Apathy in Alzheimer's Disease". J Clin Psychiatry. 83 (1). doi:10.4088/JCP.22f14398. PMID35120284.
^Azhar L, Kusumo RW, Marotta G, Lanctôt KL, Herrmann N (February 2022). "Pharmacological Management of Apathy in Dementia". CNS Drugs. 36 (2): 143–165. doi:10.1007/s40263-021-00883-0. PMID35006557.
^Müller T, Riederer P, Kuhn W (February 2023). "Aminoadamantanes: from treatment of Parkinson's and Alzheimer's disease to symptom amelioration of long COVID-19 syndrome?". Expert Rev Clin Pharmacol. 16 (2): 101–107. doi:10.1080/17512433.2023.2176301. PMID36726198.
^Frontera JA, Guekht A, Allegri RF, Ashraf M, Baykan B, Crivelli L, et al. (November 2023). "Evaluation and treatment approaches for neurological post-acute sequelae of COVID-19: A consensus statement and scoping review from the global COVID-19 neuro research coalition". J Neurol Sci. 454: 120827. doi:10.1016/j.jns.2023.120827. PMID37856998.
^Beach SR, Gomez-Bernal F, Huffman JC, Fricchione GL (September 2017). "Alternative treatment strategies for catatonia: A systematic review". Gen Hosp Psychiatry. 48: 1–19. doi:10.1016/j.genhosppsych.2017.06.011. PMID28917389.
^Obregon DF, Velasco RM, Wuerz TP, Catalano MC, Catalano G, Kahn D (July 2011). "Memantine and catatonia: a case report and literature review". J Psychiatr Pract. 17 (4): 292–299. doi:10.1097/01.pra.0000400268.60537.5e. PMID21775832.
^Graziane J, Davidowicz E, Francis A (2020). "Can Memantine Improve Catatonia and Co-occurring Cognitive Dysfunction? A Case Report and Brief Literature Review". Psychosomatics. 61 (6): 759–763. doi:10.1016/j.psym.2020.05.026. PMID32665151.
^Hong MP, Erickson CA (August 2019). "Investigational drugs in early-stage clinical trials for autism spectrum disorder". Expert Opinion on Investigational Drugs. 28 (8). Informa UK Limited: 709–718. doi:10.1080/13543784.2019.1649656. PMID31352835. S2CID198967266.
Further reading
Lipton SA (April 2005). "The molecular basis of memantine action in Alzheimer's disease and other neurologic disorders: low-affinity, uncompetitive antagonism". Current Alzheimer Research. 2 (2): 155–165. doi:10.2174/1567205053585846. PMID15974913.