Share to: share facebook share twitter share wa share telegram print page

 

Chlorid olovnatý

Chlorid olovnatý
Krystalická forma
Krystalická forma
Krystalická forma ve zkumavce
Krystalická forma ve zkumavce
Obecné
Systematický názevChlorid olovnatý
Anglický názevLead(II) chloride
Německý názevBlei(II)-chlorid
Sumární vzorecPbCl2
Vzhledbílý prášek
Identifikace
Registrační číslo CAS7758-95-4
Indexové číslo082-001-00-6
PubChem166945
Vlastnosti
Molární hmotnost278,1 g/mol
Teplota tání501 °C
Teplota varu950 °C
Hustota5,905 9 g/cm3
Dynamický viskozitní koeficient4,41 cP (507 °C)
3,23 cP (567 °C)
2,47 cP (627 °C)
1,95 cP (687 °C)
Index lomunDa= 2,199 2 (20 °C)
nDb= 2,217 2 (20 °C)
nDc= 2,259 6 (20 °C)
Rozpustnost ve vodě0,65 g/100 g (0 °C)
0,99 g/100 g (20 °C)
1,08 g/100 g (25 °C)
1,19 g/100 g (30 °C)
1,32 g/100 g (35 °C)
1,78 g/100 g (50 °C)
1,96 g/100 g (60 °C)
2,13 g/100 g (65 °C)
2,62 g/100 g (80 °C)
3,30 g/100 g (100 °C)
Rozpustnost v polárních
rozpouštědlech
kys. chlorovodíková
roztok čpavku
ethanol (málo)
Součin rozpustnosti1,62×10−5
Relativní permitivita εr33,5
Měrná elektrická vodivost−3,311 Sm−1
Povrchové napětí135 mN/m (520 °C)
132 mN/m (550 °C)
128 mN/m (580 °C)
Struktura
Krystalová strukturakosočtverečná
Hrana krystalové mřížkya= 453,5 pm
b= 762 pm
c= 905 pm
Termodynamické vlastnosti
Standardní slučovací entalpie ΔHf°−359,2 kJ/mol
Entalpie tání ΔHt85,8 J/g
Entalpie varu ΔHv463,5 J/g
Standardní molární entropie S°134,3 JK−1mol−1
Standardní slučovací Gibbsova energie ΔGf°−314,4 kJ/mol
Izobarické měrné teplo cp0,277 JK−1g−1
Bezpečnost
GHS07 – dráždivé látky
GHS07
GHS08 – látky nebezpečné pro zdraví
GHS08
GHS09 – látky nebezpečné pro životní prostředí
GHS09
[1]
Nebezpečí[1]
H-větyH360Df H332 H302 H373 H410
R-větyR20/22, R33, R50/53, R61, R62
S-větyS45, S53, S60, S61
NFPA 704
0
3
0
Není-li uvedeno jinak, jsou použity
jednotky SI a STP (25 °C, 100 kPa).

Některá data mohou pocházet z datové položky.

Chlorid olovnatý je anorganická sloučenina se vzorcem PbCl2, jeden z chloridů olova. Za běžných podmínek se jedná o bílou tuhou látku slabě rozpustnou ve vodě. Rozpustný je v roztoku kyseliny chlorovodíkové, amoniaku a málo v ethanolu. PbCl2 je jednou z nejdůležitějších olovnatých solí sloužících pro výrobu dalších sloučenin olova. V přírodě se vyskytuje v podobě minerálu cotunnitu.[2]

Struktura a vlastnosti

Krystalová struktura cotunnitu, minerální formy PbCl2

V tuhém PbCl2 je každý iont olova koordinován s 9 chloridovými ionty. Šest z nich leží ve vrcholech trigonálního prismatu a zbývající tři jsou umístěny ve stranách prismatu. Chloridové ionty nemají od centrálního atomu olova stejnou vzdálenost, sedm jich leží ve vzdálenosti 280–309 pm a dva 370 pm daleko.[3] PbCl2 tvoří bílé ortorombické jehličky.

Molekuly par chloridu olovnatého mají lomenou strukturu s úhlem Cl-Pb-Cl o velikosti 98° a délka každé z vazeb Pb-Cl je 2,44 Å.[4] PbCl2 je součástí výfukových plynů ze zážehových motorů, pokud se jako antidetonační aditivum do benzinu používá ethylenchlorid-tetraethylolovo.

Rozpustnost PbCl2 je nízká (9,9 g/l při 20 °C) a pro praktické účely se považuje za nerozpustný. Jeho Ksp je 1,7×10−5. Je jedním z pouhých čtyř běžně nerozpustných chloridů, těmi zbývajícími jsou chlorid stříbrný (AgCl), měďný (CuCl) a rtuťný (Hg2Cl2).[5][6]

Výskyt

PbCl2 se v přírodě vyskytuje ve formě minerálu cotunnitu. Ten je bezbarvý, bílý, žlutý nebo zelený s hustotou 5,3–5,8 g/cm3. Tvrdost podle Mohse je 1,5–2. Krystalová struktura je orthorhombická dipyramidální, bodová grupa je 2/m 2/m 2/m. Každý atom olova má koordinační číslo 9. Složení je 74,50 % Pb a 25,50 % Cl. Cotunnit se objevuje poblíž sopek: Vesuv (Itálie), Tarapacá (Chile) a Tolbačik (Rusko).[7]

Syntéza

Chlorid olovnatý se sráží z roztoku po přidání zdroje chloridového iontu (HCl, NaCl, KCl...) do vodného roztoku olovnaté sloučeniny, například dusičnanu olovnatého Pb(NO3)2.

Pb(NO3)2(aq) + 2 NaCl(aq) → PbCl2(s) + 2 NaNO3(aq)
Pb(CH3COO)2(aq) + HCl(aq) → PbCl2(s) + 2 CH3COOH(aq)
PbCO3 + 2 HCl(aq) → PbCl2(s) + CO2(g) + H2O[8]
Pb(NO3)2(aq) + 2 HCl(aq) → PbCl2(s) + 2 HNO3(aq)

Reakcí oxidu olovičitého s kyselinou chlorovodíkovou vzniká chlorid olovnatý, plynný chlor a voda:

PbO2(s) + 4 HCl → PbCl2(s) + Cl2 + 2 H2O

Použije-li se místo toho oxid olovnatý nebo hydroxid olovnatý, vzniká jen chlorid olovnatý a voda (nikoli však už chlor):

PbO(s) + 2 HCl → PbCl2(s) + H2O
Pb(OH)2 + 2 HCl → PbCl2 + 2 H2O

PbCl2(s) lze získat také působením plynného chloru na kovové olovo:

Pb + Cl2 → PbCl2

Reakce

Přidáním chloridového iontu do suspenze PbCl2 získáme komplexní ionty. V těchto reakcích přidaný chlorid (nebo jiné ligandy) štěpí chloridové můstky, které tvoří polymerní základ tuhého PbCl2(s).

PbCl2(s) + Cl → [PbCl3](aq)
PbCl2(s) + 2 Cl → [PbCl4]2−(aq)

PbCl2 reaguje s roztaveným NaNO2 za vzniku PbO:

PbCl2(l) + 3 NaNO2 → PbO + NaNO3 + 2 NO + 2 NaCl

PbCl2 se využívá při syntéze chloridu olovičitého (PbCl4): Cl2 probublává skrz nasycený roztok PbCl2 ve vodném roztoku NH4Cl a tvoří [NH4]2[PbCl6]. Ten se pak nechává reagovat se studenou koncentrovanou kyselinou sírovou za vzniku olejovitého PbCl4.[9]

Chlorid olovnatý je hlavním prekurzorem organokovových derivátů olova, například plumbocenu.[10] Používají se obvyklá alkylační činidla, například Grignardovo činidlo nebo organolithné sloučeniny:

2 PbCl2 + 4 RLi → R4Pb + 4 LiCl + Pb
2 PbCl2 + 4 RMgBr → R4Pb + Pb + 4 MgBrCl
3 PbCl2 + 6 RMgBr → R3Pb-PbR3 + Pb + 6 MgBrCl[11]

Tyto reakce produkují deriváty, které jsou podobnější organokřemíkovým sloučeninám, tedy olovnatý iont má při alkylaci tendenci k disproporcionaci.

Použití

xPbCl2(l) + BaTiO3(s) → Ba1-xPbxTiO3 + xBaCl2

Toxicita

Podobně jako u jiných sloučenin olova, může expozice PbCl2 vést k otravě olovem.

Odkazy

Reference

V tomto článku byl použit překlad textu z článku Lead(II) chloride na anglické Wikipedii.

  1. a b Lead chloride. pubchem.ncbi.nlm.nih.gov [online]. PubChem [cit. 2021-05-23]. Dostupné online. (anglicky) 
  2. Cotunnite [online]. [cit. 2024-08-07]. Dostupné online. 
  3. Wells A.F. (1984) Structural Inorganic Chemistry 5th edition Oxford Science Publications ISBN 0-19-855370-6
  4. HARGITTAI, I; TREMMEL, J; VAJDA, E; ISHCHENKO, A; IVANOV, A; IVASHKEVICH, L; SPIRIDONOV, V. Two independent gas electron diffraction investigations of the structure of plumbous chloride. Journal of Molecular Structure. 1977, s. 147. DOI 10.1016/0022-2860(77)87038-5. 
  5. CRC Handbook of Chemistry and Physics, 79th Edition, David R. Lide (Ed), p. 8-108
  6. Brown, Lemay, Burnsten. "Chemistry The Central Science". Solubility-Product Constants for Compounds at 25 °C. (ed 6, 1994). p. 1017
  7. Cotunnite
  8. a b Dictionary of Inorganic and Organometallic Compounds. Lead(II) Chloride. CHEMnetBASE Chemical Databases & Dictionaries – Presented by CRCnetBASE
  9. HOUSECROFT, C. E.; SHARPE, A. G. Inorganic Chemistry. 2nd. vyd. [s.l.]: Prentice Hall, 2004. ISBN 978-0130399137. S. 365. 
  10. LOWACK, R. Decasubstituted decaphenylmetallocenes. J. Organomet. Chem.. 1994, s. 25. DOI 10.1016/0022-328X(94)84136-5. 
  11. HOUSECROFT, C. E.; SHARPE, A. G. Inorganic Chemistry. 2nd. vyd. [s.l.]: Prentice Hall, 2004. ISBN 978-0130399137. S. 524. 
  12. ABOUJALIL, Almaz; DELOUME, Jean-Pierre; CHASSAGNEUX, Fernand; SCHARFF, Jean-Pierre; DURAND, Bernard. Molten salt synthesis of the lead titanate PbTiO3, investigation of the reactivity of various titanium and lead salts with molten alkali-metal nitrites. Journal of Materials Chemistry. 1998, s. 1601. DOI 10.1039/a800003d. 
  13. Stained Glass Terms and Definitions. aurene glass
  14. Kirk-Othmer. "Encyclopedia of Chemical Technology". (ed 4). p 913
  15. Perry & Phillips. "Handbook of Inorganic Compounds". (1995). p 213
  16. Kirk-Othmer. "Encyclopedia of Chemical Technology". (ed 4). p 241

Externí odkazy

Literatura

  • VOHLÍDAL, JIŘÍ; ŠTULÍK, KAREL; JULÁK, ALOIS. Chemické a analytické tabulky. 1. vyd. Praha: Grada Publishing, 1999. ISBN 80-7169-855-5. 
Kembali kehalaman sebelumnya