Share to: share facebook share twitter share wa share telegram print page

 

Hình học Riemann

Hình học Riemann là một nhánh của hình học vi phân nghiên cứu các đa tạp Riemann, đa tạp trơn với metric Riemann hay với một tích trong (inner product) trên không gian tiếp tuyến tại mỗi điểm mà các điểm này thay đổi trơn từ điểm này sang điểm khác. Điều này cho các kết quả đặc biệt như khái niệm cục bộ về góc, độ dài cung, diện tích mặt, và thể tích. Từ các khái niệm này một vài đại lượng toàn cục được dẫn ra bằng cách tích phân các thành phần cục bộ.

Hình học Riemann bắt nguồn từ tầm nhìn của Bernhard Riemann trong luận án của ông Über die Hypothesen, welche der Geometrie zu Grunde liegen (tiếng Việt: Về các giả thuyết trong đó hình học là cơ sở).[1] Nó là một sự tổng quát trừu tượng và rộng lớn của hình học vi phân các mặt cong trong R3. Quá trình phát triển hình học Riemann đã tổng hợp rất nhiều kết quả khác nhau trong hình học của các mặt và mối quan hệ của các đường trắc địa trên các mặt, các kĩ thuật của nó được ứng dụng để nghiên cứu các đa tạp khả vi trong không gian nhiều chiều. Hình học Riemann cũng được áp dụng trong thuyết tương đối tổng quát của Albert Einstein, có tác động tích cực đến lý thuyết nhómlý thuyết biểu diễn, cũng như là giải tích toàn cục, và là động lực để phát triển tô pô đại sốtô pô vi phân.

Xem thêm

Ghi chú

  1. ^ Bernhard Riemann. “On the Hypotheses which lie at the Bases of Geometry”. Nature. VIII (183): 14-17. doi:10.1038/008014a0.

Tham khảo

  • Marcel Berger, Riemannian Geometry During the Second Half of the Twentieth Century, (2000) University Lecture Series vol. 17, American Mathematical Society, Rhode Island, ISBN 0-8218-2052-4. (Provides a historical review and survey, including hundreds of references.)
  • Jurgen Jost, Riemannian Geometry and Geometric Analysis, (2002) Springer-Verlag, Berlin ISBN 3-540-4267-2 (Provides a formal introduction, written at the grad-student level.)
  • Peter Peterson, Riemannian Geometry, (1998) Springer-Verlag, Berlin ISBN 0-387-98212-4. (Provides an introduction, presented at an undergrad level.)
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9