Share to: share facebook share twitter share wa share telegram print page

 

Hình học số học

Đường cong siêu ellip được xác định bởi chỉ có hữu hạn điểm hữu tỷ (chẳng hạn như các điểm ) theo định lý Faltings.

Trong toán học, hình học số học đại khái là ứng dụng các kỹ thuật từ hình học đại số vào các vấn đề trong lý thuyết số.[1] Hình học số học tập trung vào hình học Diophantine, nghiên cứu các điểm hữu tỷ của các đa tạp đại số.[2][3]

Theo thuật ngữ trừu tượng hơn, hình học số học có thể được định nghĩa là nghiên cứu các sơ đồ loại hữu hạn trên phổ của vành số nguyên.

Tổng quan

Các đối tượng cổ điển được hình học số học đề cập đến là các điểm hữu tỷ: tập hợp nghiệm của một hệ phương trình đa thức trên các trường số, trường hữu hạn, trường p-adic hoặc trường hàm số đại số, tức là các trường không đóng đại số trừ các số thực. Điểm hữu tỷ có thể được đặc trưng trực tiếp bởi các [[hàm chiều cao]] đo độ phức tạp số học của chúng.[4]

Cấu trúc của các đa tạp đại số được xác định trên các trường không đại số đã trở thành một lĩnh vực quan tâm nảy sinh với sự phát triển trừu tượng hiện đại của hình học đại số. Trên các lĩnh vực hữu hạn, cohomology étale cung cấp các bất biến tôpô liên quan đến các đa tạp đại số.[5] Lý thuyết Hodge p-adic cung cấp các công cụ để kiểm tra khi các đặc tính chung của các đa tạp này trên các số phức mở rộng đến các trường trên các trường p-adic.[6]

Tham khảo

  1. ^ Sutherland, Andrew V. (ngày 5 tháng 9 năm 2013). “Introduction to Arithmetic Geometry” (PDF). Truy cập ngày 22 tháng 3 năm 2019.
  2. ^ Klarreich, Erica (ngày 28 tháng 6 năm 2016). “Peter Scholze and the Future of Arithmetic Geometry”. Truy cập ngày 22 tháng 3 năm 2019.
  3. ^ Poonen, Bjorn (2009). “Introduction to Arithmetic Geometry” (PDF). Truy cập ngày 22 tháng 3 năm 2019.
  4. ^ Lang, Serge (1997). Survey of Diophantine Geometry. Springer-Verlag. tr. 43–67. ISBN 3-540-61223-8. Zbl 0869.11051.
  5. ^ Grothendieck, Alexander (1960). “The cohomology theory of abstract algebraic varieties”. Proc. Internat. Congress Math. (Edinburgh, 1958). Cambridge University Press. tr. 103–118. MR 0130879.
  6. ^ Serre, Jean-Pierre (1967). “Résumé des cours, 1965–66”. Annuaire du Collège de France. Paris: 49–58.
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9