Share to: share facebook share twitter share wa share telegram print page

 

Hình học hyperbol

Các đường thẳng qua một điểm P cho trước và tiệm cận với đường R
Một hình tam giác nằm trong một mặt phẳng hình yên ngựa (một paraboloid hyperbol), cùng với hai đường thẳng siêu song song phân kỳ

Trong toán học, hình học hyperbol (còn được gọi là hình học Bolyai - Lobachevsky hoặc hình học Lobasevski) là một hình học phi Euclide. Định đề song song của hình học Euclide được thay thế bằng:

Đối với bất kỳ đường thẳng R và điểm P không cho trên R, trong mặt phẳng chứa cả đường thẳng R và điểm P có ít nhất hai đường thẳng phân biệt qua P không cắt đường thẳng R.
(so sánh điều này với tiên đề của Playfair, phiên bản hiện đại của định đề song song của Euclid)

Hình học phẳng hyperbolic cũng là hình học của bề mặt yên và bề mặt giả, bề mặt có độ cong Gaussian âm không đổi.

Một ứng dụng hiện đại của hình học hyperbol là trong lý thuyết của thuyết tương đối đặc biệt, đặc biệt là không thời gian Minkowskikhông gian gyrovector.

Khi các nhà hình học lần đầu tiên nhận ra họ đang làm việc với một loại hình học khác với hình học Euclide tiêu chuẩn, họ đã mô tả hình học của họ dưới nhiều tên khác nhau; Cuối cùng, Felix Klein đã đặt cho đối tượng cái tên hình học hyperbol để đưa nó vào hình học elliptic mà bây giờ hiếm khi được sử dụng (hình học cầu), hình học parabol (hình học Euclide) và hình học hyperbol. Ở Liên Xô cũ, môn hình học này thường được gọi là hình học Lobachevsky, được đặt theo tên của một trong những người phát hiện ra nó, nhà hình học người Nga Nikolai Lobachevsky.

Bài viết chủ yếu nói về hình học hyperbol 2 chiều (phẳng) và sự khác biệt và tương đồng giữa hình học Euclide và hình học hyperbol.

Hình học Hyperbolic có thể được mở rộng đến ba chiều trở lên; xem không gian hyperbol để biết thêm về các trường hợp ba chiều và cao hơn.

Tham khảo

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9