Share to: share facebook share twitter share wa share telegram print page

 

Vladímir Arnold

Plantilla:Infotaula personaVladímir Arnold
Imatge
Modifica el valor a Wikidata
Biografia
Naixement12 juny 1937 Modifica el valor a Wikidata
Odessa (Ucraïna) Modifica el valor a Wikidata
Mort3 juny 2010 Modifica el valor a Wikidata (72 anys)
12è districte de París (França) Modifica el valor a Wikidata
Causa de mortperitonitis Modifica el valor a Wikidata
SepulturaCementiri de Novodévitxi Modifica el valor a Wikidata
ResidènciaOdessa Modifica el valor a Wikidata
FormacióFacultat de Mecànica i Matemàtiques de la Universitat de Moscou
Universitat Estatal de Moscou Modifica el valor a Wikidata
Director de tesiAndrei Kolmogórov Modifica el valor a Wikidata
Activitat
Camp de treballAnàlisi matemàtica, topologia, càlcul diferencial, mecànica, matemàtiques, sistemes dinàmics, geometria algebraica i teoria del caos Modifica el valor a Wikidata
Lloc de treball Unió Soviètica Modifica el valor a Wikidata
Ocupaciómatemàtic, professor d'universitat, topòleg, físic Modifica el valor a Wikidata
OcupadorUniversitat d'Utrecht (1990–1990)
Universitat Estatal de Moscou (1963–1987)
Universitat París-Dauphine
Institut Steklov de Matemàtiques
Independent University of Moscow (en) Tradueix Modifica el valor a Wikidata
Membre de
Interessat enMatemàtiques Modifica el valor a Wikidata
ProfessorsAndrei Kolmogórov Modifica el valor a Wikidata
AlumnesVictor Vassiliev, Alexander Givental, Aleksey Davydov (en) Tradueix, Valery Kozlov (en) Tradueix i Yuly Ilyashenko (en) Tradueix Modifica el valor a Wikidata
Obra
Obres destacables
Estudiant doctoralAlexander Nikolajewitsch Wartschenko, Victor Goryunov, Emil Horozov, Vladimir Zakalyukin (en) Tradueix, Alexander Givental, Boris Shapiro (en) Tradueix, Vladímir Fok, Victor Vassiliev, Sabir Gusein-Zade, Jacques-Olivier Moussafir (en) Tradueix, Sergei Vladimirovich Chmutov (en) Tradueix, Petr Evgen'evich Pushkar' (en) Tradueix, Ricardo Uribe-Vargas (en) Tradueix, Mauricio Demian Garay (en) Tradueix, Vadim I. Matov (en) Tradueix, Michael Z. Shapiro (en) Tradueix, Oleg Nikolaevich Karpenkov (en) Tradueix, Rivkut Bogdanov (en) Tradueix, Alexander Shoshitaishvili (en) Tradueix, Mikhail Borisovich Sevryuk (en) Tradueix, Inna Scherbak (en) Tradueix, Eduard Grigorievich Belaga (en) Tradueix, Gianmarco Capitanio (en) Tradueix, Ernesto Rosales González (en) Tradueix, V. I. Bachtin (en) Tradueix, Vladimir Vladimirovich Fock (en) Tradueix, Ilya Aleksandrovich Bogaevsky (en) Tradueix, Aleksey Davydov (en) Tradueix, Elena Evgenievna Landis (en) Tradueix, Maksim Kazaryan (en) Tradueix, Andrei Mikhailovich Leontovich (en) Tradueix, Oleg Gennadievich Galkin (en) Tradueix, Oleg Mikhailovich Myasnichenko (en) Tradueix, Aleksandr Kh. Rakhimov (en) Tradueix, Vyacheslav Dmitrievich Sedykh (en) Tradueix, Yurii Vitalievich Chekanov (en) Tradueix, Mikhail Borisovich Mishustin (en) Tradueix, Emmanuel Ferrand (en) Tradueix, Francesca Aicardi (en) Tradueix, Fabien Napolitano, Adriana Ortiz-Rodríguez (en) Tradueix, Sergey Lando (en) Tradueix i Emmanuel Ferrand Modifica el valor a Wikidata
Família
PareIgor Vladimirovich Arnold Modifica el valor a Wikidata
Premis

Lloc webmi.ras.ru… Modifica el valor a Wikidata

Find a Grave: 112646052 Modifica el valor a Wikidata

Vladímir Ígorevitx Arnold (en rus Владимир Игоревич Арнольд; 12 de juny de 1937 a Odessa, Ucraïna - 3 de juny de 2010 a París) va ser un dels matemàtics més prolífics del món.[1][2][3][4][5]

Va entrar a estudiar a la Universitat de Moscou el 1954, on va romandre fins al 1986, any en què va ingressar a l'Institut Matemàtic Steklov de Moscou. En aquesta època va signar, juntament amb altres 99 companys, una carta de protesta per «l'empresonament en un manicomi d'un matemàtic soviètic perfectament sa». Això va portar com a conseqüència la denegació de permís per viatjar a l'estranger fins a la perestroika.

Encara que és més conegut pel teorema de Kolmogórov-Arnold-Moser respecte a l'estabilitat dels sistemes hamiltonians integrables, ha fet importants contribucions en diverses àrees que inclouen teoria de sistemes dinàmics, teoria de les catàstrofes, topologia, geometria algebraica, mecànica clàssica i teoria de la singularitat en una carrera que abasta més de 45 anys després del seu primer resultat principal - la solució del problema tretze de Hilbert el 1957.

Arnold també era conegut com un divulgador de les matemàtiques. A través de les seves conferències, seminaris i com a autor de diversos llibres de text (com el famós Mathematical Methods of Classical Mechanics) i llibres populars de matemàtiques, va influir en molts matemàtics i físics.[6] Molts dels seus llibres van ser traduïts a l'anglès. Les seves opinions sobre l'educació eren particularment oposades a les de Bourbaki.

Biografia

Vladimir Igorevich Arnold va néixer el 12 de juny de 1937 a Odessa, Unió Soviètica (ara Ucraïna). El seu pare era Igor Vladimirovich Arnold (1900–1948), matemàtic. La seva mare era Nina Alexandrovna Arnold (1909–1986, de soltera Isakovich), una historiadora de l'art jueva.[4] Mentre era estudiant de l'escola, Arnold va preguntar una vegada al seu pare per què la multiplicació de dos nombres negatius va donar un nombre positiu, i el seu pare va donar una resposta que implicava les propietats de camp dels nombres reals i la preservació de la propietat distributiva. Arnold va quedar profundament decebut amb aquesta resposta i va desenvolupar una aversió al mètode axiomàtic que li va durar tota la seva vida.[7] Quan Arnold tenia tretze anys, el seu oncle Nikolai B. Zhitkov,[8] que era enginyer, li va parlar sobre el càlcul i com es podia utilitzar per entendre alguns fenòmens físics, això va contribuir a despertar el seu interès per les matemàtiques, i va començar a estudiar. per si mateix els llibres de matemàtiques que el seu pare li havia deixat, que incloïen algunes obres de Leonhard Euler i Charles Hermite.[9]

Mentre era estudiant d’Andrei Kolmogórov a la Universitat Estatal de Moscou i encara era adolescent, Arnold va demostrar el 1957 que qualsevol funció contínua de diverses variables es pot construir amb un nombre finit de funcions de dues variables, resolent així el tretzè problema de Hilbert.[10] Aquest és el teorema de representació de Kolmogorov-Arnold.

Després de graduar-se a la Universitat Estatal de Moscou el 1959, hi va treballar fins al 1986 (professor des de 1965), i després a l'Institut Matemàtic Steklov.

Es va convertir en un acadèmic de l’Acadèmia de Ciències de la Unió Soviètica (Acadèmia de Ciències de Rússia des de 1991) el 1990.[11] Es pot dir que Arnold va iniciar la teoria de la topologia simplèctica com una disciplina diferent. La conjectura d'Arnold sobre el nombre de punts fixos dels simplectomorfismes hamiltonians i les interseccions lagrangianes també van ser una de les principals motivacions en el desenvolupament de l'homologia de Floer.

L'any 1999 va patir un greu accident de bicicleta a París, que va resultar en una lesió cerebral traumàtica, i tot i que va recuperar la consciència al cap d'unes setmanes, va tenir amnèsia i durant un temps no va poder ni reconèixer la seva pròpia dona a l'hospital,[12] però va va fer una bona recuperació.[13]

Arnold va treballar a l’Institut Matemàtic Steklov de Moscou i a la Universitat Paris Dauphine fins a la seva mort. A data de 2006 es va informar que tenia l’Índex de cites més alt entre els científics russos,[14] i un índex h de 40. Entre els seus alumnes hi ha Alexander Givental, Victor Goryunov, Sabir Gusein-Zade, Emil Horozov, Boris Khesin, Askold Khovanskii, Nikolay Nekhoroshev, Boris Shapiro, Alexander Varchenko, Victor Vassiliev i Vladimir Zakalyukin.

Pels seus estudiants i col·legues, Arnold era conegut també pel seu sentit de l'humor. Per exemple, una vegada al seu seminari a Moscou, a principis de curs, quan normalment formulava nous problemes, va dir:

« Hi ha un principi general que un home estúpid pot fer aquestes preguntes a les quals cent savis no serien capaços de respondre. D'acord amb aquest principi, formularé alguns problemes.[15] »

Mort

Arnold va morir de pancreatitis aguda[16] el 3 de juny de 2010 a París, nou dies abans del seu 73è aniversari.[17] Va ser enterrat el 15 de juny a Moscou, al Monestir de Novodévitxi.[18]

En un telegrama a la família d'Arnold, el president rus Dmitri Medvédev va declarar:

« La mort de Vladimir Arnold, un dels més grans matemàtics del nostre temps, és una pèrdua irrecuperable per a la ciència mundial. És difícil sobreestimar la contribució de l'acadèmic Arnold a les matemàtiques modernes i el prestigi de la ciència russa.

L'ensenyament va tenir un lloc especial a la vida de Vladimir Arnold i va tenir una gran influència com a mentor il·lustrat que va ensenyar a diverses generacions de científics talentosos.

El record de Vladimir Arnold romandrà per sempre al cor dels seus col·legues, amics i estudiants, així com de tots els que van conèixer i admirar aquest home brillant.[19]

»

Escrits matemàtics populars

Arnold és conegut pel seu estil d'escriptura lúcid, combinant el rigor matemàtic amb la intuïció física i un estil de conversa fàcil d'ensenyar i educar. Els seus escrits presenten un enfocament fresc, sovint geomètric, de temes matemàtics tradicionals com les equacions diferencials ordinàries, i els seus nombrosos llibres de text han demostrat ser influents en el desenvolupament de noves àrees de les matemàtiques. La crítica estàndard a la pedagogia d'Arnold és que els seus llibres «són bells tractaments dels seus temes que són apreciats pels experts, però s'ometen massa detalls perquè els estudiants aprenguin les matemàtiques necessàries per demostrar les afirmacions que ell justifica amb tanta facilitat». La seva defensa va ser que els seus llibres estan pensats per ensenyar el tema a «aquells que realment volen entendre'l» (Chicone, 2007).[20]

Arnold va ser un crític obert de la tendència cap a alts nivells d'abstracció en matemàtiques durant la meitat del segle passat. Tenia opinions molt contundents sobre com aquest enfocament, que va ser implementat més popularment per l'escola Bourbaki a França, va tenir inicialment un impacte negatiu en l'educació matemàtica francesa, i després també en la d'altres països.[21] Arnold estava molt interessat en la història de les matemàtiques.[22] En una entrevista,[21] va dir que havia après molt del que sabia sobre matemàtiques a través de l'estudi del llibre de Felix Klein Development of Mathematics in the 19th Century, un llibre que sovint recomanava als seus estudiants.[23] Va estudiar els clàssics, sobretot les obres de Huygens, Newton i Poincaré,[24] i moltes vegades va informar que havia trobat en les seves obres idees que encara no havien estat explorades.[25]

Obres

Arnold va treballar en teoria de sistemes dinàmics, teoria de catàstrofes, topologia, geometria algebraica, geometria simplèctica, equacions diferencials, mecànica clàssica, hidrodinàmica i teoria de la singularitat. Michèle Audin el va descriure com «un geòmetre en el sentit més ampli possible de la paraula» i va dir que «va ser molt ràpid per establir connexions entre diferents camps».[26]

Tretzè problema d'Hilbert

El problema és la següent pregunta: es pot expressar tota funció contínua de tres variables com una composició de moltes funcions contínues de dues variables? La resposta afirmativa a aquesta pregunta general va ser donada el 1957 per Vladimir Arnold, llavors només amb dinou anys i alumne d’Andrei Kolmogórov. Kolmogórov havia demostrat l'any anterior que qualsevol funció de diverses variables es pot construir amb un nombre finit de funcions de tres variables. Arnold va ampliar aquest treball per demostrar que només es requerien funcions de dues variables, responent així a la pregunta de Hilbert quan es plantejava per a la classe de funcions contínues.

Sistemes dinàmics

Moser i Arnold van ampliar les idees de Kolmogórov (que es va inspirar en preguntes de Poincaré) i van donar lloc al que ara es coneix com a teorema de Kolmogórov-Arnold-Moser (o teoria KAM), que es refereix a la persistència d'alguns moviments quasi periòdics. (sistemes hamiltonians gairebé integrables) quan estan pertorbats. La teoria KAM mostra que, malgrat les pertorbacions, aquests sistemes poden ser estables durant un període de temps infinit, i especifica quines són les condicions per a això.[27]

El 1964, Arnold va introduir la xarxa Arnold, el primer exemple d'una xarxa estocàstica.[28][29]

Teoria de la singularitat

El 1965, Arnold va assistir al seminari de René Thom sobre la teoria de les catàstrofes. Més tard en va dir: «Estic profundament en deute amb Thom, el seminari de singularitat del qual a l’Institut des hautes études scientifiques, que vaig freqüentar durant tot l'any 1965, va canviar profundament el meu univers matemàtic».[30] Després d'aquest esdeveniment, la teoria de la singularitat es va convertir en un dels principals interessos d'Arnold i els seus estudiants.[31] Entre els seus resultats més famosos en aquesta àrea es troba la seva classificació de singularitats simples, continguda en el seu article Formes normals de funcions prop de punts crítics degenerats, els grups de Weyl de A k,D k,E k i singularitats lagrangianes.[32][33]

Dinàmica de fluids

El 1966, Arnold va publicar Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, en què va presentar una interpretació geomètrica comuna tant per a les equacions d'Euler per a cossos rígids en rotació com per a les equacions d'Euler de la dinàmica de fluids, això va vincular de manera efectiva temes que es pensava que no estaven relacionats i va permetre solucions matemàtiques a moltes qüestions relacionades amb els fluxos de fluids i les seves turbulències.[34][35]

Geometria algebraica real

L'any 1971, Arnold va publicar On the arrangement of ovals of real plane algebraic curves, involutions of four-dimensional smooth manifolds, and the arithmetic of integral quadratic forms,[36] que va donar nova vida a la geometria algebraica real. Allà va fer grans avenços en la direcció d'una solució a la conjectura de Gudkov, trobant una connexió entre aquesta i la topologia de quatre dimensions.[37] La conjectura s'havia de resoldre completament després per Vladímir Rokhlin basant-se en el treball d'Arnold.[38][39]

Geometria simplèctica

La conjectura d'Arnold, que enllaça el nombre de punts fixos dels simplectomorfismes hamiltonians i la topologia de les varietats subjacents, va ser la font motivadora de molts dels estudis pioners en topologia simplèctica.[40][41]

Topologia

Segons Victor Vassiliev, Arnold «va treballar relativament poc en la topologia pel bé de la topologia». I estava més aviat motivat per problemes en altres àrees de les matemàtiques on la topologia podia ser útil. Les seves contribucions inclouen la invenció d'una forma topològica del teorema d'Abel-Ruffini i el desenvolupament inicial d'algunes de les idees conseqüents, un treball que va donar lloc a la creació del camp de la teoria topològica de Galois als anys seixanta.[42][43]

Teoria de les corbes planes

Segons Marcel Berger, Arnold va revolucionar la teoria de les corbes planes.[44] Entre les seves contribucions hi ha els invariants d'Arnold de les corbes planes.[45]

Altres

Arnold va conjecturar l'existència del gömböc.[46]

Honors i premis

Arnold (esquerra) i el president rus Dmitri Medvédev
  • Premi Lobachevsky de l'Acadèmia Russa de Ciències (1992)[52]
  • Harvey Prize (1994), "per la seva contribució bàsica a la teoria de l'estabilitat dels sistemes dinàmics, el seu treball pioner sobre la teoria de la singularitat i les contribucions fonamentals a l'anàlisi i la geometria ".
  • Premi Wolf en Matemàtiques (2001), «pel seu treball profund i influent en multitud d'àrees de les matemàtiques, incloent sistemes dinàmics, equacions diferencials i teoria de la singularitat».[54]
  • Premi Estatal de la Federació Russa (2007),[55] "per un èxit excepcional en matemàtiques".
  • Premi Shaw en ciències matemàtiques (2008, amb Ludvig Faddéiev), «per les seves contribucions a la física matemàtica».

El planeta menor 10031 Vladarnolda va rebre el seu nom el 1981 per Lyudmila Karachkina.[56]

L’Arnold Mathematical Journal, publicat per primera vegada el 2015, porta el seu nom.[57]

Les Arnold Fellowships, de l’Institut de Londres, porten el seu nom.[58]

Va ser ponent al ple del Congrés Internacional de Matemàtics de 1974 i 1983 a Vancouver i Varsòvia, respectivament.[59]

Omissió de la medalla Fields

Tot i que Arnold va ser nominat per a la Medalla Fields de 1974, que aleshores es considerava l'honor més alt que podia rebre un matemàtic, la interferència del govern soviètic va fer que es retirés. L'oposició pública d'Arnold a la persecució dels dissidents l'havia portat a un conflicte directe amb influents funcionaris soviètics, i ell mateix va patir persecució, inclòs no se li va permetre sortir de la Unió Soviètica durant la major part dels anys setanta i vuitanta.[60][61]

Referències

  1. «Vladímir Arnold». Gran Enciclopèdia Catalana. Barcelona: Grup Enciclopèdia Catalana.
  2. Leon, Manuel de «Necrológica: IN MEMÓRIAM. Vladímir I. Arnold, el matemático que amaba los problemas». El País, 11-06-2010 [Consulta: 9 juliol 2018].
  3. «Mort d'un grand mathématicien russe» (en francès), 03-06-2010. [Consulta: 21 juliol 2023].
  4. 4,0 4,1 «Obituary Vladimir Arnold». Newsletter of the European Mathematical Society.
  5. 5,0 5,1 Khesin, Boris; Tabachnikov, Sergei Biographical Memoirs of Fellows of the Royal Society, 64, 2018, pàg. 7–26. DOI: 10.1098/rsbm.2017.0016. ISSN: 0080-4606 [Consulta: free].
  6. Bartocci, Claudio. Mathematical Lives: Protagonists of the Twentieth Century From Hilbert to Wiles (en anglès). Springer, 2010, p. 211. ISBN 9783642136061. 
  7. Vladimir I. Arnold. Yesterday and Long Ago. Springer, 2007, p. 19–26. ISBN 978-3-540-28734-6. 
  8. Swimming Against the Tide, p. 3
  9. Табачников, С. Л.. "Интервью с В.И.Арнольдом", Квант, 1990, Nº 7, pp. 2–7. (en rus)
  10. Daniel Robertz. Formal Algorithmic Elimination for PDEs. Springer, 13 octubre 2014, p. 192. ISBN 978-3-319-11445-3. 
  11. Great Russian Encyclopedia (2005), Moscow: Bol'shaya Rossiyskaya Enciklopediya Publisher, vol. 2.
  12. Arnold: Yesterday and Long Ago (2010)
  13. Polterovich and Scherbak (2011)
  14. «List of Russian scientists with citation index >1000». [Consulta: 25 juliol 2023].
  15. «Vladimir Arnold». The Daily Telegraph [Londres], 12-07-2010.
  16. Kenneth Chang «Vladimir Arnold Dies at 72; Pioneering Mathematician». , 11-06-2010 [Consulta: 12 juny 2013].
  17. «Number's up as top mathematician Vladimir Arnold dies». , 04-06-2010 [Consulta: 6 juny 2010].
  18. «From V. I. Arnold's web page». [Consulta: 12 juny 2013].
  19. «Condolences to the family of Vladimir Arnold». Presidential Press and Information Office, 15-06-2010 [Consulta: 1r setembre 2011].
  20. Carmen Chicone (2007), Book review of "Ordinary Differential Equations", by Vladimir I. Arnold. Springer-Verlag, Berlin, 2006. SIAM Review 49(2):335–336.
  21. 21,0 21,1 An Interview with Vladimir Arnol'd, by S. H. Lui, AMS Notices, 1991.
  22. Oleg Karpenkov. "Vladimir Igorevich Arnold"
  23. B. Khesin i Sergei Tabachnikov, Tribute to Vladimir Arnold, Notices of the AMS, 59:3 (2012) 378–399.
  24. Goryunov, V.; Zakalyukin, V. «Vladimir I. Arnold». Moscow Mathematical Journal, 11, 3, 2011.
  25. See for example: Arnold, V. I.; Vasilev, V. A. (1989), "Newton's Principia read 300 years later" and Arnold, V. I. (2006); "Forgotten and neglected theories of Poincaré".
  26. "Vladimir Igorevich Arnold and the Invention of Symplectic Topology", chapter I in the book Contact and Symplectic Topology (editors: Frédéric Bourgeois, Vincent Colin, András Stipsicz)
  27. Szpiro, George G. Poincare's Prize: The Hundred-Year Quest to Solve One of Math's Greatest Puzzles. Penguin, 29 juliol 2008. ISBN 9781440634284. 
  28. Phase Space Crystals, by Lingzhen Guo https://iopscience.iop.org/book/978-0-7503-3563-8.pdf
  29. Zaslavsky, George «Zaslavsky web map» (en anglès). Scholarpedia, 2, 10, 11-10-2007, pàg. 3369. DOI: 10.4249/scholarpedia.3369. ISSN: 1941-6016.
  30. «Archived copy». Arxivat de l'original el 14 juliol 2015. [Consulta: 22 febrer 2015].
  31. «Resonance – Journal of Science Education | Indian Academy of Sciences».
  32. Note: It also appears in another article by him, but in English: Local Normal Forms of Functions, http://www.maths.ed.ac.uk/~aar/papers/arnold15.pdf
  33. Dirk Siersma. New Developments in Singularity Theory. Springer Science & Business Media, 30 juny 2001, p. 29. ISBN 978-0-7923-6996-7. 
  34. Terence Tao. Compactness and Contradiction. American Mathematical Soc., 22 març 2013, p. 205–206. ISBN 978-0-8218-9492-7. 
  35. IAMP News Bulletin, juliol 2010, pp. 25–26
  36. Note: The paper also appears with other names, as in http://perso.univ-rennes1.fr/marie-francoise.roy/cirm07/arnold.pdf
  37. A. G. Khovanskii. Topics in Singularity Theory: V. I. Arnold's 60th Anniversary Collection (preface). American Mathematical Soc., 1997, p. 10. ISBN 978-0-8218-0807-8. 
  38. Khesin, Boris A. Arnold: Swimming Against the Tide, 10 setembre 2014, p. 159. ISBN 9781470416997. 
  39. Degtyarev, A. I.; Kharlamov, V. M. Russian Mathematical Surveys, 55, 4, 2000, pàg. 735–814. arXiv: math/0004134. Bibcode: 2000RuMaS..55..735D. DOI: 10.1070/RM2000v055n04ABEH000315.
  40. "Arnold and Symplectic Geometry", by Helmut Hofer
  41. "Vladimir Igorevich Arnold and the invention of symplectic topology", by Michèle Audin https://web.archive.org/web/20160303175152/http://www-irma.u-strasbg.fr/~maudin/Arnold.pdf
  42. "Topology in Arnold's work", by Victor Vassiliev
  43. [enllaç sense format] http://www.ams.org/journals/bull/2008-45-02/S0273-0979-07-01165-2/S0273-0979-07-01165-2.pdf Bulletin (New Series) of The American Mathematical Society Volume 45, Number 2, abril 2008, pp. 329–334
  44. A Panoramic View of Riemannian Geometry, de Marcel Berger, pp.24-25
  45. Extrema of Arnold's invariants of curves on surfaces, by Vladimir Chernov https://math.dartmouth.edu/~chernov-china/
  46. Mackenzie, Dana. What's Happening in the Mathematical Sciences (en anglès). American Mathematical Soc., 29 desembre 2010, p. 104. ISBN 9780821849996. 
  47. O. Karpenkov, "Vladimir Igorevich Arnold", Internat. Math. Nachrichten, no. 214, pp. 49–57, 2010. (link to arXiv preprint)
  48. Harold M. Schmeck Jr. «American and Russian Share Prize in Mathematics». , 27-06-1982.
  49. «Vladimir I. Arnold». www.nasonline.org. [Consulta: 14 abril 2022].
  50. «Book of Members, 1780–2010: Chapter A». American Academy of Arts and Sciences. [Consulta: 25 abril 2011].
  51. «APS Member History». search.amphilsoc.org. [Consulta: 14 abril 2022].
  52. Anosov, D. B.; Bolibrukh, A. A.; Faddeev, Lyudvig D.; Gonchar, A. A.; Gromov, M. L. «Vladimir Igorevich Arnol'd (on his sixtieth birthday)» (en anglès). Russian Mathematical Surveys, 52, 5, 31-10-1997, pàg. 1117. DOI: 10.1070/RM1997v052n05ABEH002106. ISSN: 0036-0279.
  53. «Prize Recipient» (en anglès). [Consulta: 25 juliol 2023].
  54. The Wolf Foundation – Vladimir I. Arnold Winner of Wolf Prize in Mathematics
  55. «Названы лауреаты Государственной премии РФ» (en rus), 20-05-2008. [Consulta: 25 juliol 2023].
  56. Lutz D. Schmadel. Dictionary of Minor Planet Names. Springer Science & Business Media, 10 juny 2012, p. 717. ISBN 978-3-642-29718-2. 
  57. Arnold Mathematical Journal. DOI: 10.1007/s40598-015-0006-6.
  58. «Arnold Fellowships».
  59. «International Mathematical Union (IMU)». Arxivat de l'original el 24 novembre 2017. [Consulta: 22 maig 2015].
  60. Martin L. White. «Vladimir Igorevich Arnold». A: . 
  61. Thomas H. Maugh II «Vladimir Arnold, noted Russian mathematician, dies at 72». , 23-06-2010 [Consulta: 18 març 2015].

Vegeu també

Bibliografia

  • 1989: (with A. Avez) Ergodic Problems of Classical Mechanics, Addison-Wesley ISBN 0-201-09406-1.
  • 1990: Huygens and Barrow, Newton and Hooke: Pioneers in mathematical analysis and catastrophe theory from evolvents to quasicrystals, Eric J.F. Primrose translator, Birkhäuser Verlag (1990) ISBN 3-7643-2383-3.[4][5][6]
  • 1998: "On the teaching of mathematics" (Russian) Uspekhi Mat. Nauk 53 (1998), no. 1(319), 229–234; translation in Russian Math. Surveys 53(1): 229–236.
  • 1999: (with Valentin Afraimovich) Bifurcation Theory And Catastrophe Theory Springer ISBN 3-540-65379-1
  • 2001: "Tsepniye Drobi" (Continued Fractions, en rus), Moscow (2001).
  • 2004: Teoriya Katastrof (Catastrophe Theory,[8] in Russian), 4th ed. Moscow, Editorial-URSS (2004), ISBN 5-354-00674-0.
  • 2004: Vladimir I. Arnold. Arnold's Problems. 2a edició. Springer-Verlag, 15 novembre 2004. ISBN 978-3-540-20748-1. 
  • 2015: Experimental Mathematics. American Mathematical Society (translated from Russian, 2015).
  • 2015: Lectures and Problems: A Gift to Young Mathematicians, American Math Society, (translated from Russian, 2015)

Enllaços externs

  1. Sacker, Robert J. Technometrics, 17, 3, 01-08-1975, pàg. 388–389. DOI: 10.1080/00401706.1975.10489355. ISSN: 0040-1706.
  2. Kapadia, Devendra A. (en anglès) The Mathematical Gazette, 79, 484, 3-1995, pàg. 228–229. DOI: 10.2307/3620107. ISSN: 0025-5572. JSTOR: 3620107.
  3. Chicone, Carmen SIAM Review, 49, 2, 2007, pàg. 335–336. ISSN: 0036-1445. JSTOR: 20453964.
  4. Kazarinoff, N. SIAM Review, 33, 3, 01-09-1991, pàg. 493–495. DOI: 10.1137/1033119. ISSN: 0036-1445.
  5. Thiele, R. Journal of Applied Mathematics and Mechanics, 73, 1, 01-01-1993, pàg. 34. Bibcode: 1993ZaMM...73S..34T. DOI: 10.1002/zamm.19930730109. ISSN: 1521-4001.
  6. Heggie, Douglas C. Proceedings of the Edinburgh Mathematical Society, 34, 2, 01-06-1991, pàg. 335–336. DOI: 10.1017/S0013091500007240. ISSN: 1464-3839 [Consulta: free].
  7. Goryunov, V. V. Proceedings of the Edinburgh Mathematical Society, 39, 3, 01-10-1996, pàg. 590–591. DOI: 10.1017/S0013091500023348. ISSN: 1464-3839 [Consulta: free].
  8. Bernfeld, Stephen R. SIAM Review, 27, 1, 01-01-1985, pàg. 90–91. DOI: 10.1137/1027019. JSTOR: 2031497.
  9. Guenther, Ronald B.; Thomann, Enrique A. SIAM Review, 47, 1, 2005, pàg. 165–168. ISSN: 0036-1445. JSTOR: 20453608.
  10. Groves, M. Journal of Applied Mathematics and Mechanics, 85, 4, 2005, pàg. 304. Bibcode: 2005ZaMM...85..304G. DOI: 10.1002/zamm.200590023. ISSN: 1521-4001.
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9