Share to: share facebook share twitter share wa share telegram print page

 

Список логічних символів

У логіці, набір символів зазвичай використовується, щоб висловити логічне представлення. Оскільки логіки знайомі з цими символами, вони не пояснюють їх кожен раз при використанні. Для студентів, що вчать логіку, ця таблиця дає пояснення більшості логічних символів. Крім того, третій стовпчик містить неформальне визначення, п'ятий і шостий дають код Unicode та ім'я для використання в HTML-документах[1]. Останній стовпчик дає символ в системі LaTeX.

Слід пам'ятати, що поза логікою різні символи мають однаковий зміст, тоді як один і той самий символ має, в залежності від контексту, різні значення.

Базові логічні символи

Символ
Назва Пояснення Приклад Unicode HTML LaTeX
Читати як
Категорія

Матеріальна імплікація AB правильно, тільки тоді коли A неправильно, або B правильно.

→ може значити те саме, що ⇒ (символ може також вказувати область визначення і область значення функції, див. таблицю математичних символів)

⊃ може значити те саме, що ⇒ (символ може також значити надмножину).

x = 2  ⇒  x² = 4 правильно, але x² = 4  ⇒  x = 2, в загальному випадку, неправильне (оскільки x може дорівнювати −2). U+21D2

U+2192 U+2283

\Rightarrow

\to\supset

\implies

з .. виходить; якщо .. то
Логіка висловлювань.

Алгебра Гейтинга

Тоді й лише тоді A ⇔ B правильно, тільки якщо обидва A і B неправильні, або обидва правильні. x + 5 = y + 2  ⇔  x + 3 = y U+21D4

U+2261 U+2194

\Leftrightarrow

\equiv\leftrightarrow

\iff

Тоді і тільки тоді
Логіка висловлювань
¬

˜

!
Заперечення Твердження ¬A правильне тоді і тільки тоді, коли A неправильне.

Знак /, розташований зверху іншого оператора, означає те ж, що «¬».

¬(¬A)  ⇔ A

x ≠ y  ⇔  ¬(x = y)

U+00AC

U+02DC

¬

˜

~

\lnot или \neg

\sim

not (не)
Логіка висловлювань

&
Кон'юнкція Твердження AB правильне, якщо і A, і B правильні, і неправильне в іншому разі. n < 4  ∧  n >2  ⇔  n = 3, якщо n — натуральне число. U+2227

U+0026

&

\wedge або \land

\&[2]

and (і)
Логіка висловлювань.

Булева алгебра.

+

ǀǀ
Логічна диз'юнкція Твердження AB правильне, якщо A або B (або обидва) правильні. Якщо обидва неправильні, то твердження неправильне. n ≥ 4  ∨  n ≤ 2  ⇔ n ≠ 3 коли n є натуральним числом. U+2228 \lor або \vee
or (або)
Логіка висловлювань.

Булева алгебра.

Виключна диз'юнкція Твердження AB правильне, коли A або B правильне, але не обидва. A B означає те саме. A) ⊕ A завжди правильне, AA завжди неправильне. U+2295

U+22BB

\oplus

\veebar

xor
Логіка висловлювань.

Булева алгебра.

T

1
Тавтологія Твердження ⊤ безумовно правильне. A  ⇒ ⊤ завжди правильне. U+22A4 T \top
верх
Логіка висловлювань.

Булева алгебра.

F

0
Суперечність Твердження ⊥ безумовно неправильне. ⊥ ⇒ A завжди правильне. U+22A5 ⊥ F \bot
Неправильно, помилково
Логіка висловлювань.

Булева алгебра.

Квантор загальності ∀ xP(x) або (xP(x) означає P(x) правильне для всіх x. ∀ n ∈ : n² ≥ n. U+2200 \forall
для будь-якого; для всіх
Логіка першого порядку
Квантор існування ∃ x: P(x) означає, що існує як мінімум один x, такий, що P(x) правильне. ∃ n ∈ : n парне. U+2203 \exists
існує
Логіка першого порядку
∃!
Єдиність ∃! x: P(x) означає, що існує лише один x, такий, що P(x) правильне. ∃! n ∈ : n + 5 = 2n. U+2203 U+0021 ∃ ! \exists !
Існує тільки один
Логіка першого порядку
:=



:⇔
означення x := y або x ≡ y означає x визначається як інша назва для y (але врахуйте, що ≡ може також означати інші речі, такі як конгруентність).

P :⇔ Q означає P визначається як логічна еквівалентність для Q.
cosh x := (1/2)(exp x + exp (−x))

AB  :⇔ (AB) ∧ ¬(AB)
U+2254 (U+003A U+003D)

U+2261

U+003A U+229C
:=
:

&equiv;

&hArr;
:=
\equiv
\Leftrightarrow
визначається як
усюди
()
Пріоритет угруповання Виконайте операції всередині дужок першими. (8 ÷ 4) ÷ 2 = 2 ÷ 2 = 1, але 8 ÷ (4 ÷ 2) = 8 ÷ 2 = 4. U+0028 U+0029 () ()
дужки
усюди
Турнікет[en] x y означає y доводиться від x (у деякій заданих формальних системах). AB ¬B → ¬A U+22A2 &#8866; \vdash
доказовий
Числення висловлень, Логіка першого порядку
Подвійний турнікет[en] xy означає x семантично тягне y AB ⊨ ¬B → ¬A U+22A8 &#8872; \models
тягне за собою
Числення висловлень, Логіка першого порядку

Інші символи

Символи відсортовані відповідно до коду Unicode:

  • U+00B7 • Точка в середині, застарілий спосіб позначення AND[3], залишається в електроніці, наприклад, «A•B» означає те ж, що «A&B».
  •  : Центральна точка зі смугою над нею, застарілий спосіб для позначення І-НЕ, наприклад, «AB» означає те ж, що «A І-НЕ B», або «A|B», або «¬(A & B)». Див. також символ Unicode U+22C5 ⋅ оператор точка.
  • U+2191 ↑ Стрілка вгору або U+007C | Вертикальна риска: Штрих Шефера, знак для оператора І-НЕ.
  • U+2201Доповнення.
  • U+2204 ∄ Не існує: перекреслений квантор існування, те ж, що «¬∃»
  • U+2234 ∴ Відповідно, таким чином, тому.
  • U+2235 ∵ Оскільки, тому що, що.
  • U+22A7 ⊧ Імплікація: є моделлю для …. Наприклад, A ⊧ B означає, що з A слідує B. В будь-якій моделі, де A ⊧ B, якщо А правильне, то і B правильне.
  • U+22A8 ⊨ Істина: є істиною.
  • U+22AD ⊭ Хиба: не є істиною.
  • U+22BC ⊼ НЕ-І: другий оператор НЕ-і, може бути записаний як .
  • U+22C4 ⋄ Ромб: модальний оператор для «можливо, що», «не обов'язково ні».
  • U+22C6 ⋆ Зірочка: звичайно використовується як спеціальний оператор.
  • U+22A5 ⊥ Кнопка вгору абоU+2193 ↓ Стрілка вниз: стрілка Пірса. Інколи «⊥» використовують для протиріччя.
  • U+2310 ⌐ Скасований НЕ.
  • U+231C ⌜ Лівий верхній куток і U+231D ⌝ Правий верхній куток: кутові дужки. Наприклад, «⌜G⌝» означає число Геделя для G.
  • U+25FB ◻ Середній білий квадрат або U+25A1 □ Білий квадрат: модальний оператор необхідно, або можна довести.

Польща і Німеччина

У Польщі квантор загальності іноді пишеться так: , а квантор існування так: . Те ж можна зустріти в Німецькій літературі.[джерело?]

Див. також

Примітки

  1. HTML 5.1: 8. The HTML syntax#the-html-syntaxReferenced in:9. The XHTML syntax. www.w3.org. Процитовано 11 травня 2016.
  2. Хотя этот символ доступен в LaTeX, система MediaWiki TeX его не поддерживает.
  3. Brody, 1973, с. 93.

Посилання

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9