^Yamanaka, N., Okayama, T., & Oishi, S. I. (2015, November). Verified Error Bounds for the Real Gamma Function Using Double Exponential Formula over Semi-infinite Interval. In International Conference on Mathematical Aspects of Computer and Information Sciences (pp. 224-228). Springer, Cham.
^Rump, S. M. (2014). Verified sharp bounds for the real gamma function over the entire floating-point range. Nonlinear Theory and Its Applications, IEICE, 5(3), 339-348.
^N. Yamamoto and N. Matsuda (2005): Trans. Jap. Soc. Indust. Appl. Math., 15,
347-359.
^Johansson, F. (2019). Numerical Evaluation of Elliptic Functions, Elliptic Integrals and Modular Forms. In Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory (pp. 269-293). Springer, Cham.
^Johansson, F. (2019). Computing Hypergeometric Functions Rigorously. ACM Transactions on Mathematical Software (TOMS), 45(3), 30.
^Johansson, F. (2015). Rigorous high-precision computation of the Hurwitz zeta function and its derivatives. Numerical Algorithms, 69(2), 253-270.
^Johansson, F. (2017). Arb: efficient arbitrary-precision midpoint-radius interval arithmetic. IEEE Transactions on Computers, 66(8), 1281-1292.
^Johansson, F. (2018, July). Numerical integration in arbitrary-precision ball arithmetic. In International Congress on Mathematical Software (pp. 255-263). Springer, Cham.
^Johansson, F., & Mezzarobba, M. (2018). Fast and Rigorous Arbitrary-Precision Computation of Gauss--Legendre Quadrature Nodes and Weights. en:SIAM Journal on Scientific Computing, 40(6), C726-C747.
^S.M. Rump: INTLAB - INTerval LABoratory. In Tibor Csendes, editor, Developments in Reliable Computing, pages 77-104. Kluwer Academic Publishers, Dordrecht, 1999.
^Rohn, J. (2009). VERSOFT: verification software in MATLAB/INTLAB.
^Montanher, T. M. (2009). Intsolver: An interval based toolbox for global optimization. Version 1.0.
^
Overview of kv – a C++ library for verified numerical computation, Masahide Kashiwagi, SCAN 2018.
^Johansson, F. (2013). Arb: a C library for ball arithmetic. ACM Comm. Computer Algebra, 47(3/4), 166-169.
^Sanders, D. P., Benet, L., & Kryukov, N. (2016). The julia package ValidatedNumerics. jl and its application to the rigorous characterization of open billiard models. SCAN 2016, 124.
^ValidatedNumerics.jl: a new framework in Julia, David P. Sanders and Luis Benet, SCAN 2018.