Share to: share facebook share twitter share wa share telegram print page

 

90 (number)

← 89 90 91 →
Cardinalninety
Ordinal90th
(ninetieth)
Factorization2 × 32 × 5
Divisors1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90
Greek numeralϞ´
Roman numeralXC, xc
Binary10110102
Ternary101003
Senary2306
Octal1328
Duodecimal7612
Hexadecimal5A16
ArmenianՂ
Hebrewצ / ץ
Babylonian numeral𒐕𒌍
Egyptian hieroglyph𓎎

90 (ninety) is the natural number following 89 and preceding 91.

In the English language, the numbers 90 and 19 are often confused, as they sound very similar. When carefully enunciated, they differ in which syllable is stressed: 19 /naɪnˈtiːn/ vs 90 /ˈnaɪnti/. However, in dates such as 1999, and when contrasting numbers in the teens and when counting, such as 17, 18, 19, the stress shifts to the first syllable: 19 /ˈnaɪntiːn/.

In mathematics

Ninety is a pronic number as it is the product of 9 and 10,[1] and along with 12 and 56, one of only a few pronic numbers whose digits in decimal are also successive. 90 is divisible by the sum of its base-ten digits, which makes it the thirty-second Harshad number.[2]

Properties of the number

  • 90 is the only number to have an aliquot sum of 144 = 122.
  • Only three numbers have a set of divisors that generate a sum equal to 90, they are 40, 58, and 89.[3]
  • 90 is the tenth and largest number to hold an Euler totient value of 24;[9] no number has a totient that is 90, which makes it the eleventh nontotient (with 50 the fifth).[10]

The twelfth triangular number 78[11] is the only number to have an aliquot sum equal to 90, aside from the square of the twenty-fourth prime, 892 (which is centered octagonal).[12][13] 90 is equal to the fifth sum of non-triangular numbers, respectively between the fifth and sixth triangular numbers, 15 and 21 (equivalently 16 + 17 ... + 20).[14] It is also twice 45, which is the ninth triangular number, and the second-smallest sum of twelve non-zero integers, from two through thirteen .

90 can be expressed as the sum of distinct non-zero squares in six ways, more than any smaller number (see image):[15]

.

90 as the sum of distinct nonzero squares

The square of eleven 112 = 121 is the ninetieth indexed composite number,[16] where the sum of integers is 65, which in-turn represents the composite index of 90.[16] In the fractional part of the decimal expansion of the reciprocal of 11 in base-10, "90" repeats periodically (when leading zeroes are moved to the end).[17]

The eighteenth Stirling number of the second kind is 90, from a of 6 and a of 3, as the number of ways of dividing a set of six objects into three non-empty subsets.[18] 90 is also the sixteenth Perrin number from a sum of 39 and 51, whose difference is 12.[19]

Prime sextuplets

The members of the first prime sextuplet (7, 11, 13, 17, 19, 23) generate a sum equal to 90, and the difference between respective members of the first and second prime sextuplets is also 90, where the second prime sextuplet is (97, 101, 103, 107, 109, 113).[20][21] The last member of the second prime sextuplet, 113, is the 30th prime number. Since prime sextuplets are formed from prime members of lower order prime k-tuples, 90 is also a record maximal gap between various smaller pairs of prime k-tuples (which include quintuplets, quadruplets, and triplets).[a]

Unitary perfect number

90 is the third unitary perfect number (after 6 and 60), since it is the sum of its unitary divisors excluding itself,[22] and because it is equal to the sum of a subset of its divisors, it is also the twenty-first semiperfect number.[23]

Right angle

A right angle measures ninety degrees.

An angle measuring 90 degrees is called a right angle.[24] In normal space, the interior angles of a rectangle measure 90 degrees each, while in a right triangle, the angle opposing the hypotenuse measures 90 degrees, with the other two angles adding up to 90 for a total of 180 degrees.

Icosahedral symmetry

The Witting polytope, with ninety van Oss polytopes

Solids

The rhombic enneacontahedron is a zonohedron with a total of 90 rhombic faces: 60 broad rhombi akin to those in the rhombic dodecahedron with diagonals in ratio, and another 30 slim rhombi with diagonals in golden ratio. The obtuse angle of the broad rhombic faces is also the dihedral angle of a regular icosahedron, with the obtuse angle in the faces of golden rhombi equal to the dihedral angle of a regular octahedron and the tetrahedral vertex-center-vertex angle, which is also the angle between Plateau borders: 109.471°. It is the dual polyhedron to the rectified truncated icosahedron, a near-miss Johnson solid. On the other hand, the final stellation of the icosahedron has 90 edges. It also has 92 vertices like the rhombic enneacontahedron, when interpreted as a simple polyhedron. Meanwhile, the truncated dodecahedron and truncated icosahedron both have 90 edges. A further four uniform star polyhedra (U37, U55, U58, U66) and four uniform compound polyhedra (UC32, UC34, UC36, UC55) contain 90 edges or vertices.

Witting polytope

The self-dual Witting polytope contains ninety van Oss polytopes such that sections by the common plane of two non-orthogonal hyperplanes of symmetry passing through the center yield complex 3{4}3 Möbius–Kantor polygons.[25] The root vectors of simple Lie group E8 are represented by the vertex arrangement of the polytope, which shares 240 vertices with the Witting polytope in four-dimensional complex space. By Coxeter, the incidence matrix configuration of the Witting polytope can be represented as:

or

This Witting configuration when reflected under the finite space splits into 85 = 45 + 40 points and planes, alongside 27 + 90 + 240 = 357 lines.[25]

Whereas the rhombic enneacontahedron is the zonohedrification of the regular dodecahedron,[26] a honeycomb of Witting polytopes holds vertices isomorphic to the E8 lattice, whose symmetries can be traced back to the regular icosahedron via the icosian ring.[27]

Cutting an annulus

The maximal number of pieces that can be obtained by cutting an annulus with twelve cuts is 90 (and equivalently, the number of 12-dimensional polyominoes that are prime).[28]

References

  1. ^ 90 is the record gap between the first pair of prime quintuplets of the form (p, p+2, p+6, p+8, p+12) (A201073), while 90 is a record between the second and third prime quintuplets that have the form (p, p+4, p+6, p+10, p+12) (A201062). Regarding prime quadruplets, 90 is the gap record between the second and third set of quadruplets (A113404). Prime triplets of the form (p, p+4, p+6) have a third record maximal gap of 90 between the second and ninth triplets (A201596), and while there is no record gap of 90 for prime triplets of the form (p, p+2, p+6), the first and third record gaps are of 6 and 60 (A201598), which are also unitary perfect numbers like 90 (A002827).
  1. ^ "Sloane's A002378 : Oblong (or promic, pronic, or heteromecic) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-29.
  2. ^ "Sloane's A005349 : Niven (or Harshad) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-29.
  3. ^ Sloane, N. J. A. (ed.). "Sequence A000203 (...the sum of the divisors of n.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-06-30.
  4. ^ Sloane, N. J. A. (ed.). "Sequence A005101 (Abundant numbers (sum of divisors of m exceeds 2m).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-06-23.
  5. ^ Sloane, N. J. A. (ed.). "Sequence A002093 (Highly abundant numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-06-23.
  6. ^ Sloane, N. J. A. (ed.). "Sequence A071395 (Primitive abundant numbers (abundant numbers all of whose proper divisors are deficient numbers).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-06-23.
  7. ^ Sloane, N. J. A. (ed.). "Sequence A000005 (d(n) (also called tau(n) or sigma_0(n)), the number of divisors of n.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  8. ^ Sloane, N. J. A. (ed.). "Sequence A067128 (Ramanujan's largely composite numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  9. ^ Sloane, N. J. A. (ed.). "Sequence A000010 (Euler totient function phi(n): count numbers less than or equal to n and prime to n.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2024-01-16.
  10. ^ "Sloane's A005277 : Nontotients". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-29.
  11. ^ Sloane, N. J. A. (ed.). "Sequence A000217 (Triangular numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-11-01.
  12. ^ Sloane, N. J. A. (ed.). "Sequence A001065 (Sum of proper divisors (or aliquot parts) of n: sum of divisors of n that are less than n.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-06-30.
  13. ^ Sloane, N. J. A. (ed.). "Sequence A016754 (Centered octagonal numbers.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-07-02.
  14. ^ Sloane, N. J. A. (ed.). "Sequence A006002 (...also: Sum of the nontriangular numbers between successive triangular numbers.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  15. ^ Sloane, N. J. A. (ed.). "Sequence A033461 (Number of partitions of n into distinct squares.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  16. ^ a b Sloane, N. J. A. (ed.). "Sequence A02808 (The composite numbers.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  17. ^ Sloane, N. J. A. (ed.). "Sequence A060283 (Periodic part of decimal expansion of reciprocal of n-th prime (leading 0's moved to end).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  18. ^ "Sloane's A008277 :Triangle of Stirling numbers of the second kind". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2021-12-24.
  19. ^ "Sloane's A001608 : Perrin sequence". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-29.
  20. ^ Sloane, N. J. A. (ed.). "Sequence A022008 (Initial member of prime sextuples (p, p+4, p+6, p+10, p+12, p+16).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-06-11.
  21. ^ Sloane, N. J. A. (ed.). "Sequence A200503 (Record (maximal) gaps between prime sextuplets (p, p+4, p+6, p+10, p+12, p+16).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-06-23.
  22. ^ "Sloane's A002827 : Unitary perfect numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-29.
  23. ^ "Sloane's A005835 : Pseudoperfect (or semiperfect) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-29.
  24. ^ Friedman, Erich (n.d.). "What's Special About This Number?". www.stetson.edu. Archived from the original on February 23, 2018. Retrieved February 27, 2023.
  25. ^ a b Coxeter, Harold Scott MacDonald (1974). Regular Complex Polytopes (1st ed.). Cambridge University Press. p. 133. ISBN 978-0-52-1201254.
  26. ^ Hart, George W. "Zonohedrification". Virtual Polyhedra (The Encyclopedia of Polyhedra). Retrieved 2023-06-23.
  27. ^ Baez, John C. (2018). "From the Icosahedron to E8". London Math. Soc. Newsletter. 476. London, UK: London Mathematical Society: 18–23. arXiv:1712.06436. Bibcode:2017arXiv171206436B. MR 3792329. S2CID 119151549. Zbl 1476.51020.
  28. ^ Sloane, N. J. A. (ed.). "Sequence A000096 (a(n) equal to n*(n+3)/2.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9