Share to: share facebook share twitter share wa share telegram print page

 

44 (number)

← 43 44 45 →
Cardinalforty-four
Ordinal44th
(forty-fourth)
Factorization22 × 11
Divisors1, 2, 4, 11, 22, 44
Greek numeralΜΔ´
Roman numeralXLIV, xliv
Binary1011002
Ternary11223
Senary1126
Octal548
Duodecimal3812
Hexadecimal2C16

44 (forty-four) is the natural number following 43 and preceding 45.

In mathematics

Forty-four is a repdigit and palindromic number in decimal. It is the tenth 10-happy number,[1] and the fourth octahedral number.[2]

It is a square-prime of the form p2 × q, and fourth of this form and of the form 22 × q, where q is a higher prime.

It is the first member of the first cluster of two square-primes; of the form p2 × q, specifically 22 × 11 = 44 and 32 × 5 = 45. The next such cluster of two square-primes comprises 22 × 29 = 116, and 32 × 13 = 117.

44 has an aliquot sum of 40, within an aliquot sequence of three composite numbers (44, 40, 50, 43, 1, 0) rooted in the prime 43-aliquot tree.

Since the greatest prime factor of 442 + 1 = 1937 is 149 and thus more than 44 twice, 44 is a Størmer number.[3] Given Euler's totient function, φ(44) = 20 and φ(69) = 44.

44 is a tribonacci number, preceded by 7, 13, and 24, whose sum it equals.[4]

44 is the number of derangements of 5 items.[5]

There are only 44 kinds of Schwarz triangles, aside from the infinite dihedral family of triangles (p 2 2) with p = {2, 3, 4, ...}.[6]

There are 44 distinct stellations of the truncated cube and truncated octahedron, per Miller's rules.[7]

44 four-dimensional crystallographic point groups of a total 227 contain dual enantiomorphs, or mirror images.[8]

There are forty-four classes of finite simple groups that arise from four general families of such groups:

Sometimes the Tits group is considered a 17th non-strict simple group of Lie type, or a 27th sporadic group, which would yield a total of 45 classes of finite simple groups.

In other fields

Forty-four is:

References

  1. ^ "Sloane's A007770 : Happy numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-30.
  2. ^ "Sloane's A005900 : Octahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-30.
  3. ^ "Sloane's A005528 : Størmer numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-30.
  4. ^ "Sloane's A000073 : Tribonacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-30.
  5. ^ "Sloane's A000166 : Subfactorial or rencontres numbers, or derangements". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-30.
  6. ^ Messer, Peter W. (2002). "Closed-Form Expressions for Uniform Polyhedra and Their Duals" (PDF). Discrete & Computational Geometry. 27 (3). Springer: 353–355, 372–373. doi:10.1007/s00454-001-0078-2. MR 1921559. S2CID 206996937. Zbl 1003.52006.
  7. ^ Webb, Robert. "Enumeration of Stellations". www.software3d.com. Archived from the original on 2022-11-26. Retrieved 2022-11-25.
  8. ^ Souvignier, Bernd (2003). "Enantiomorphism of crystallographic groups in higher dimensions with results in dimensions up to 6". Acta Crystallographica Section A. 59 (3): 217. doi:10.1107/s0108767303004161. PMID 12714771. S2CID 26198482. Zbl 1370.20045.
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9