Share to: share facebook share twitter share wa share telegram print page

 

84 (number)

← 83 84 85 →
Cardinaleighty-four
Ordinal84th
(eighty-fourth)
Factorization22 × 3 × 7
Divisors1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 84
Greek numeralΠΔ´
Roman numeralLXXXIV, lxxxiv
Binary10101002
Ternary100103
Senary2206
Octal1248
Duodecimal7012
Hexadecimal5416

84 (eighty-four) is the natural number following 83 and preceding 85. It is seven dozens.

In mathematics

A hepteract is a seven-dimensional hypercube with 84 penteract 5-faces.

84 is a semiperfect number,[1] being thrice a perfect number, and the sum of the sixth pair of twin primes .[2] It is the number of four-digit perfect powers in decimal.[3]

It is the third (or second) dodecahedral number,[4] and the sum of the first seven triangular numbers (1, 3, 6, 10, 15, 21, 28), which makes it the seventh tetrahedral number.[5]

The number of divisors of 84 is 12.[6] As no smaller number has more than 12 divisors, 84 is a largely composite number.[7]

The twenty-second unique prime in decimal, with notably different digits than its preceding (and known following) terms in the same sequence, contains a total of 84 digits.[8]

A hepteract is a seven-dimensional hypercube with 84 penteract 5-faces.[9]

84 is the limit superior of the largest finite subgroup of the mapping class group of a genus surface divided by .[citation needed]

Under Hurwitz's automorphisms theorem, a smooth connected Riemann surface of genus will contain an automorphism group whose order is classically bound to .[10]

84 is the thirtieth and largest for which the cyclotomic field has class number (or unique factorization), preceding 60 (that is the composite index of 84),[11] and 48.[12][13]

There are 84 zero divisors in the 16-dimensional sedenions .[14]

In other fields

Eighty-four is also:

References

  1. ^ Sloane, N. J. A. (ed.). "Sequence A005835 (Pseudoperfect (or semiperfect) numbers n: some subset of the proper divisors of n sums to n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  2. ^ Sloane, N. J. A. (ed.). "Sequence A077800 (List of twin primes {p, p+2})". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-06-08.
  3. ^ Sloane, N. J. A. (ed.). "Sequence A075308 (Number of n-digit perfect powers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  4. ^ Sloane, N. J. A. (ed.). "Sequence A006566 (Dodecahedral numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  5. ^ Sloane, N. J. A. (ed.). "Sequence A000292 (Tetrahedral (or triangular pyramidal) numbers: a(n) = C(n+2,3) = n*(n+1)*(n+2)/6)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  6. ^ Sloane, N. J. A. (ed.). "Sequence A000005 (d(n) (also called tau(n) or sigma_0(n)), the number of divisors of n.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  7. ^ Sloane, N. J. A. (ed.). "Sequence A067128 (Ramanujan's largely composite numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  8. ^ Sloane, N. J. A. (ed.). "Sequence A040017 (Prime 3 followed by unique period primes (the period r of 1/p is not shared with any other prime))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-06-08.
  9. ^ Sloane, N. J. A. (ed.). "Sequence A046092 (4 times triangular numbers: a(n) = 2*n*(n+1))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  10. ^ Giulietti, Massimo; Korchmaros, Gabor (2019). "Algebraic curves with many automorphisms". Advances in Mathematics. 349 (9). Amsterdam, NL: Elsevier: 162–211. arXiv:1702.08812. doi:10.1016/J.AIM.2019.04.003. MR 3938850. S2CID 119269948. Zbl 1419.14040.
  11. ^ Sloane, N. J. A. (ed.). "Sequence A002808 (The composite numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  12. ^ Washington, Lawrence C. (1997). Introduction to Cyclotomic Fields. Graduate Texts in Mathematics. Vol. 83 (2nd ed.). Springer-Verlag. pp. 205–206 (Theorem 11.1). ISBN 0-387-94762-0. MR 1421575. OCLC 34514301. Zbl 0966.11047.
  13. ^ Sloane, N. J. A. (ed.). "Sequence A005848 (Cyclotomic fields with class number 1 (or with unique factorization))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  14. ^ Cawagas, Raoul E. (2004). "On the Structure and Zero Divisors of the Cayley-Dickson Sedenion Algebra". Discussiones Mathematicae – General Algebra and Applications. 24 (2). PL: University of Zielona Góra: 262–264. doi:10.7151/DMGAA.1088. MR 2151717. S2CID 14752211. Zbl 1102.17001.
  15. ^ Venerabilis, Beda (May 13, 2020) [731 AD]. "Historia Ecclesiastica gentis Anglorum/Liber Secundus" [The Ecclesiastical History of the English Nation/Second Book]. Wikisource (in Latin). Retrieved September 29, 2022.
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9