Share to: share facebook share twitter share wa share telegram print page

 

Guia d'ones

Aquest article tracta sobre les guies d'ones òptiques. Vegeu-ne altres significats a «guia d'ones (electromagnetisme)».

Una guia d'ones és un dispositiu utilitzat en òptica i telecomunicacions que permet dirigir i transmetre ones, habitualment electromagnètiques i acústiques.

Història

La primera guia d'ona va ser proposada per Joseph John Thomson a 1893 i experimentalment verificada per O. J. Lodge a 1894. L'anàlisi matemàtica dels modes de propagació d'un cilindre metàl·lic buit va ser realitzat per primera vegada per Lord Rayleigh a 1897.

En alguns sistemes de telecomunicacions utilitzen la propagació d'ones en l'espai lliure, però també es pot transmetre informació mitjançant el confinament de les ones en cables o guies. A altes freqüències les línies de transmissió i els cables coaxials presenten atenuacions molt elevades pel que impedeixen que la transmissió de la informació sigui l'adequada, són poc pràctic per a aplicacions en HF (alta freqüència) o de baix consum de potència, especialment en el cas del senyal les longituds d'ona són de l'ordre de centímetres, és a dir, microones.

La transmissió de senyals per guies d'ona redueix la dissipació d'energia, és per això que s'utilitzen en les freqüències denominades de microones amb el mateix propòsit que les línies de transmissió a freqüències més baixes, ja que es presenten poca atenuació per al maneig de senyals d'alta freqüència.

Aquest nom, s'utilitza per designar els tubs d'un material de secció rectangular, circular o el·líptica, en els quals la direcció de l'energia electromagnètica és principalment conduïda al llarg de la guia i limitada en les seves fronteres. Les parets conductores del tub confinen l'ona a l'interior per reflexió, a causa de la llei de Snell a la superfície, on el tub pot estar buit o farcit amb un dielèctric. El dielèctric li dona suport mecànic al tub (les parets poden ser primes), però redueix la velocitat de propagació.

A les guies, els camps elèctrics i els camps magnètics estan confinats en l'espai que es troba al seu interior, d'aquesta manera no hi ha pèrdues de potència per radiació i les pèrdues al dielèctric són molt baixes, ja que sol ser aire. Aquest sistema evita que hi hagi interferències en el camp per altres objectes, al contrari del que passava en els sistemes de transmissió oberts.

Principis d'operació

Depenent de la freqüència, es poden construir amb materials conductors o dielèctrics. Generalment, com més baixa és la freqüència, major és la guia d'ona. Per exemple, l'espai entre la superfície terrestre i la ionosfera, l'atmosfera, actua com una guia d'ona. Les dimensions limitades de la Terra fan que aquesta guia d'ona actuï com cavitat ressonant per les ones electromagnètiques a la banda ELF. (vegeu ressonància Schumann).

Les guies d'ona també poden tenir dimensions de pocs centímetres. Un exemple pot ser les utilitzades pels satèl·lits de EHF i pels radars.

Anàlisi

Les guies d'ona electromagnètiques s'analitzen resolent les equacions de Maxwell. Aquestes equacions tenen solucions múltiples, o maneres, que són els autofuncions del sistema d'equacions. Cada manera és doncs caracteritzat per un autovalor, que correspon a la velocitat de propagació axial de l'ona en la guia.

Els modes de propagació depenen de la longitud d'ona, de la polarització i de les dimensions de la guia. El mode longitudinal d'una guia d'ona és un tipus particular d'ona estacionària format per ones confinades a la cavitat. Els modes transversals

es classifiquen en tipus diferents:

  • Manera TE (Transversal elèctric), la component del camp elèctric en la direcció de propagació és nul.
  • Manera TM (Transversal magnètic), la component del camp magnètic en la direcció de propagació és nul.
  • Manera TEM (Transversal electromagnètic), la component tant del camp elèctric com del magnètic en la direcció de propagació és nul.
  • Manera híbrid, són els que sí que tenen component en la direcció de propagació tant en el camp elèctric com en el magnètic.

En guies d'ona rectangulars el mode fonamental és el TE 1,0 i en guies d'ona circulars és el TE 1,1.

L'amplada de banda d'una guia d'ona ve limitada per l'aparició de modes superiors. En una guia rectangular, seria el TE 0,1. Per augmentar aquesta amplada de banda s'utilitzen altres tipus de guia, com l'anomenada " Double Ridge ", amb secció en forma de "H".

Aplicacions

Les guies d'ona són molt adequades per a transmetre senyals a causa de la seva baixes pèrdues. Per això, es fan servir en microones, malgrat la seva amplada de banda limitat i volum, més gran que el de línies impreses o coaxials per a la mateixa freqüència.

També es realitzen diferents dispositius en guies d'ona, com acobladors direccionals, filtres, circuladors i altres.

Actualment, són especialment importants, i ho seran més en el futur, les guies d'ona dielèctriques treballant a freqüències de la llum visible i infraroja, habitualment anomenades fibra òptica, útils per a transportar informació de banda ampla, substituint els cables coaxials i enllaços de microones en les xarxes telefòniques i, en general, les xarxes de dades.

Tipus de guies d'ones

Hi ha molts tipus de guies d'ona, presentant aquí les més importants:

Guia d'ones conductora

  1. Guia d'ones conductora. Teoria general
  2. Guia rectangular
  3. Guia plana
  4. Guia cilíndrica
  5. Guia coaxial
  6. Potència transmesa
  7. Atenuació

Guia d'ones conductora. Teoria general

Camp electromagnètic en una guia conductora

Suposarem una estructura cilíndrica de secció recta qualsevol, infinitament llarga i amb parets constituïdes per un conductor perfecte (conductivitat ). La part interior de l'estructura de la guia està plena d'un dielèctric perfecte (). Aquest sistema s'anomena guia d'ones conductora i s'utilitza com un sistema on es propaguen les ones electromagnètiques d'una forma guiada.

Utilitzarem (s, z) com a coordenades, on les s seran les coordenades transversals (que són (x, y) o (r, φ)). A l'interior de la guia tenim un camp electromagnètic que es propaga verificant l'equació d'ones:

Si prenem camps sinusoidals:

tindrem:

,

on:

.

Si fem , cada component del camp complirà l'equació:

equació transversal:

equació axial:

on la segona expressió és una equació escalar del component axial del camp elèctric, gràcies al fet que el vector és constant en mòdul direcció i sentit.

El camp magnètic complirà també:

equació transversal:

equació axial:

Si posem els components transversals en funció dels components axials , només haurem d'integrar les equacions escalars dels components z.

De (Panovski-Phillips), les expressions de en funció de són:

Per tal d'integrar les equacions escalars de i , les posarem en la forma:

i utilitzarem el mètode de separació de variables. Fem:

i podrem escriure:

on:

Les solucions de l'equació , són de la forma:

i, d'ací, podem escriure:

(hem inclòs la constant A dins de la funció f(s).

Els components axials dels camps seran:

Donat que la guia és indefinida en la direcció z, no podem aplicar condicions de contorn en aquesta direcció, llavors, pot tenir qualsevol valor. Ho podem posar com:

La esdevé aleshores la constant de propagació de la guia i l'anomenarem:

tindrem, doncs:

La resolució de les equacions d'ona transversals (coneguda la geometria de la secció transversal de la guia) ens proporcionarà les funcions f(s). Aleshores, podrem imposar les condicions de contorn i obtindrem els autovalors i les corresponents autofuncions .

Determinats els autovalors, podrem calcular :

on , i és la freqüència que apliquem a un extrem de la guia. La geometria determina la , i per tant, per cada i cada podrem calcular la constant de propagació en la guia, . Però pot passar que:

Vegeu també

Enllaços externs

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9