Share to: share facebook share twitter share wa share telegram print page

 

Ocean reanalysis

Ocean reanalysis is a method of combining historical ocean observations with a general ocean model (typically a computational model) driven by historical estimates of surface winds, heat, and freshwater, by way of a data assimilation algorithm to reconstruct historical changes in the state of the ocean.

Historical observations are sparse and insufficient for understanding the history of the ocean and its circulation. By utilizing data assimilation techniques in combination with advanced computational models of the global ocean, researchers are able to interpolate the historical observations to all points in the ocean. This process has an analog in the construction of atmospheric reanalysis and is closely related to ocean state estimation.

Current projects

A number of efforts have been initiated in recent years to apply data assimilation to estimate the physical state of the ocean, including temperature, salinity, currents, and sea level, in recent years.[1] There are three alternative state estimation approaches. The first approach is used by the ‘no-model’ analyses, for which temperature or salinity observations update a first guess provided by climatological monthly estimates.

The second approach is that of the sequential data assimilation analyses, which move forward in time from a previous analysis using a numerical simulation of the evolving temperature and other variables produced by an ocean general circulation model. The simulation provides the first guess of the state of the ocean at the next analysis time, while corrections are made to this first guess based on observations of variables such as temperature, salinity, or sea level.

The third approach is 4D-Var, which in the implementation described uses the initial conditions and surface forcing as control variables to be modified in order to be consistent with the observations as well as a numerical representation of the equations of motion through iterative solution of a giant optimization problem.

Methodologies

No-model approach

ISHII and LEVITUS begin with a first guess of the climatological monthly upper-ocean temperature based on climatologies produced by the NOAA National Oceanographic Data Center. The innovations are mapped onto the analysis levels. ISHII uses and alternative 3DVAR approach to do an objective mapping with a smaller decorrelation scale in midlatitudes (300 km) that elongates in the zonal direction by a factor of 3 at equatorial latitudes. LEVITUS begins similarly to ISHII, but uses the technique of Cressman and Barnes with a homogeneous scale of 555 km to objectively map the temperature innovation onto a uniform grid.

Sequential approaches

The sequential approaches can be further divided into those using Optimal Interpolation and its more sophisticated cousin the Kalman Filter, and those using 3D-Var. Among those mentioned above, INGV and SODA use versions of Optimal Interpolation. CERFACS, GODAS, and GFDL all use 3DVar. "To date we are unaware of any attempt to use Kalman Filter for multi-decadal ocean reanalyses."[1] The 4-Dimensional Local Ensemble Transform Kalman Filter (4D-LETKF) has been applied to the Geophysical Fluid Dynamics Laboratory's (GFDL) Modular Ocean Model (MOM2) for a 7-year ocean reanalysis from January 1997 – 2004.[2]

Variational (4D-Var) approach

One innovative attempt by GECCO has been made to apply 4D-Var to the decadal ocean estimation problem. This approach faces daunting computational challenges, but provides some interesting benefits including satisfying some conservation laws and the construction of the ocean model adjoint.

See also

References

  1. ^ a b Carton, J.A., and A. Santorelli, 2008: Global upper ocean heat content as viewed in nine analyses, J. Clim., 21, 6015–6035.
  2. ^ Hunt, B.R., Kostelich E.J., Szunyogh, I. Efficient Data Assimilation for Spatiotemporal Chaos: A Local Ensemble Transform Kalman Filter. arXiv:physics/0511236 v1 28 Nov 2005. Dated May 24, 2006.
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9