Share to: share facebook share twitter share wa share telegram print page

 

Pearson ki-kare testi

Pearson ki-kare testi nicel veya nitel değişkenler arasında bağımlılık olup olmadığının, örnek sonuçlarının belirli bir teorik olasılık dağılımına uygun olup olmadığının, iki veya daha fazla örneğin aynı anakütleden gelip gelmediğinin, ikiden fazla anakütle oranının birbirine eşit olup olmadığının ve çeşitli anakütle oranlarının belirli değere eşit olup olmadığının araştırılmasında kullanılır. İstatistik biliminin çıkarımsal istatistik bölümünde ele alınan iki-değişirli parametrik olmayan test analizlerinden olan ve ki-kare dağılımı'nı esas olarak kullanan ki-kare testlerinden en çok kullanılanıdır. İngiliz istatistikçi olan Karl Pearson tarafından 1900'da ortaya çıkartılmıştır.[1]

Bağımsızlık testi

Pearson ki-kare testi yönteminin pratik bir problem çözülmesinde kullanılması şu basamaklar kullanılarak yapılır.

1. Araştırma konusu:
Pearson'un ki kare testi her biri iki kategorili olan iki isimsel ölçekle ölçülebilen rassal değişken arasındaki bağımsızlık veya bağımlılık ilişkisinin incelenmesi için kullanılır. Bir iki isimsel ölçekle ölçülebilen rassal değişken

  • "satır değişkeni" : kategorili ve
  • "sütun segiskeni" : kategorili .

Araştırma konusu genellikle X ile Y değişkenlerinin birbirinden istatistiksel olarak bağımsız olduğudur. Buna başlıca neden Pearson'ın ki kare yeştinin "bağımlılık" konusunda çok zayıf sonuç vermesidir.

2. Hipotezler:
Pearson'un ki kare test için hipotezler şöyle ifade edilir:

  • H0</sub) "sıfır hipotez" : iki kategorili olan iki isimsel ölçekle ölçülebilen rassal değişken birbirinden istatistiksel olarak bağımsızdır.
  • H1 "alternatif hipotez": iki kategorili olan isimsel ölçekle ölçülen iki rassal değişken birbirinden istatistiksel olarak bağımsız değildir.

Bu hipotezlerden açıkça görülmektedir ki sınanma için kullanılan hipotez anakütle parametreler değerleri hakkında değildir ve bir istatistiksel nitelik hakkındadır. Böylece Pearson ki-kare testi bir parametrik olmayan istatistik örneğidir. Bunun yanında, dikkat edilmelidir ki alternatif hipotezin bir "negatif" cümle olarak ifade edilmektedir. yani "istatistiksel olarak bağımsız değildir" ifadesi. Bu ifade pozitif vir cümle yani alternatif hipotezde "iki rassal değişken istatistiksel olarak bağımlıdır." dememektedir. Yapılan çıkarımsal test analizi sonuncu "sıfır hipotez" reddedilirse iki değişkeninin ne kadar birbirine bağımlı olduğu bulunmaz; bağımlılık derecesi çok küçük olması mümkündür.

3. Veri toplanması, her hücresi için "gözlemlenen değerler" bulunan kontenjans tablosu ve marjinal toplamlar:
Pearson ki kare testi "iki-değişirli" istatistiksel analize örnektir; yani her bir "vaka" için iki değişir hakkında veri elde edilir. Değişir için sadece X ve Y olan iki-isimsel ölçekli değişken hakkında cevap olabilir. Örneğin; bir ankete verilen tek kişi cevabı "tek vaka"dır ve araştırmada bu ankete bulunan iki soruya, yani 2 değişire, araştırmacı ilgisi çekilmektedir. Her iki değişir de isimsel ölçekli kategorik değerler alabilir. İki-değişir kategorili gözlem özetlenmesi bir "kontenjans tablosu" halinde olur ve Pearson ki-kare testi için pratikte kullanılan veriler bu karşılıklı olarak sınıflandırılmış iki değişirli "kontenjans tablosu" halindedir.

Kontenjans tablosu verileri şu tip tabloda özetler:

değişiri Satır Toplamı Σ
değişiri 1 2 k c nj.
1 O11 O12 ... O1k ... O1r O1.
2 O21 O22 O2k O2c n2.
j Ojk nj.
r Or1 Or2 Ork Orc nc.
Sütun toplamı Σ n.1 n.2 n.k n.c n

Bu tabloda bulunan rxc adet ifadesi "gözlem değerleri"'dir ve tam sayılıdırlar. Her bir j satırı için l=1,...,r "satır toplamı" = Her bir k sütunu için k=1,...,c "sütun toplamı" = olarak bulunur ve bunlar a "marjinal toplamlar" adı da verilir.

Satır toplamları hepsinin toplamı ve sütün toplamları hepsinin toplamı toplam gözlem sayısına, yani örneklem büyüklüğü olan n değerine eşittir.

4. Teorik "beklenen değerler":
Her bir hücre üçün bur "beklenen değer" yani Ejk l-1,...r ve k=1,...c bulunur. Bu "beklenen değer" olasılık teoeiasinde bulunan iki bağımsız rassal değişken olan A ve B için "çarpım savı"na dayanır. Bu "bağımsız iki rassal değişken için çarpım savı" şöyle ifade edilir:

Bu savı kullanarak ve olasılığın asımtotik olarak "relatif çokluluk"'a eşit olduğu kabul edilip, eğer X ve Y değişirleri sıfır hipoteze uygun olarak bağımsızlarsa, her bir (jk) hücresi için olasılık şöyle ifade edilebilir:

Bu olasılık ifadesinin her iki tarafını da ile çarpılırsa her bir hücre için "beklenen değer" şöyle bulunur:

5: Hesaplanan ki-kare değeri. Serbestlik derecesi
Hesaplanan ki-kare değeri

Serbestlik derecesi :

6. Anlamlılık seviyesi ve bu seviye için teorik test istatistik ki-kare değeri

Anlamlılık seviyesi ve p-değeri.

wird abgelehnt, wenn , dem -Quantil der -Verteilüng mit

7. Test sonucu ve araştırma konusu

Uygunluk iyiliği testi

"Tekdüze ayrık dağılım'a uygunluk", binom dağılım'a uygunluk", Poisson dağılım'a uygunluk" ve eğer normal değerler sınıflandırılıp sınıf ortalaması kategori değeri gibi kullanılırsa "normal dağılım'a uygunluk" testleri olabilirler.

Ayrık tekdüze dağılımına uygunluk testi

Bu tip problemde n tane sayısal olarak belirtilmiş kategorisi bulunan isimsel ölçekli bir değişken bulunur. Elde edilen N sayıda örneklem de bu kategorilerin frekansları çokluğudur yani Veriler nx1 tipli (yani n satırlı ve 1 sütunlu) bir özel "kontenjans tablosu" halindedir ve bu tabloda n tane hücre bulunup her hücrede o hücrenin kategorisinde olan tam sayı ile ifade edilen "çokluluk (frekans)", ı=1..n) vardır. Her bir hücre çokluğu o kategoriye isabet eden "gözlemlenen değer" olarak alınır.

"Sıfır hipotez" bu veri dağılımının teorik olarak ayrık tekdüze dağılım'ina uyacağıdır ve alternatif hipotez bu dağılıma uymayacağıdır. Bu çok basit sıfır hipotezleri ve teorik olarak her bir hücrenin birbirine eşit sayıda "beklenen değer" alacağını önerir. Tekrar dikkat edilmelidir ki "ki-kare dağılım iyiliği" testi de (diğer Pearson ki-kare testi" gibi) eğer sıfır hipotez reddelerse "zayıf" sonuç verir; yani eldeki veriler "ayrık tekdüze dağılım"'a uymaz ama hangi dağılım uyduğu bu test ile açığa çıkmaz.

Teorik "ayrık tekdüze dağılımı"'na göre rassal değişkende her bir veri kategorisi aynı olasılık gösterir. Bu nedenle N tane veri için her bir i kategorisi için aynı değer taşıyan "beklenen değer", E, yani

olarak hesaplanır.

"Hesaplanan ki-kare değeri" her hücre için "gözlemlenen değer" eksi "beklenen değer" farkının karesinin "beklenen değer"'e bölünmesinin tüm hücreler için toplanmasıdır: Yani

Test istatistiğinin hesaplanması

Uygunluk iyiliği sınaması için test istatistiği su formüle göre hesaplanmış:

Bu formülde

= Pearson'un kümülatif test istatistiği olup, bu "hesaplanmış " değeri asimtotik olarak bir ki-kare dagilimi'na yakınlaşmaktadır.
= gözlenen cokluluk değeri;
= sıfır hipotez önerisinin gerçek olduğu kabul edilerek bir teorik beklenmekte olan çokluluk değerdir ;
= tabloda bulunan hücre sayısı
Ki-kare dagilimi, yatay x-ekseni "hesaplanmis " degerlerini dikey Y-ekseni ise P-degerleridir.

Ayrıca bakınız

Kaynakça

  1. ^ Karl Pearson (1900). "On the criterion that a given system of deviations from the probable ın the case of a correlated system of variables is such that it can be reasonably supposed to have arısen from random sampling". Philosophical Magazine, Series 5. 50 (302). ss. 157-175. doi:10.1080/14786440009463897. 

Dış bağlantılar

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9