Share to: share facebook share twitter share wa share telegram print page

 

Bidördey

William Rowan Hamilton, "quaternion" kavramını geliştirerek matematik ve fizik alanında önemli katkılarda bulunan bir İrlandalı bilim insanıdır; bu kavram, Bıdordey gibi alanlarda da uygulanmaktadır.

Soyut cebirde, bidördeyler sayılarıdır. Klasik dördeylere benzese de sayıları reel sayılar değil karmaşık sayılar kümesinin elemanlarıdır. Bir başka deyişle, dördey grubu elemanları olan elemanlarının katsayıları reel sayılar kümesinin elemanları değil karmaşık sayılar kümesinin elemanlarıdır.

Aşağıda dördey grubu elemanlarının katsayıları olabilecek 3 tip sayı vardır.

  • Elemanların katsayıları karmaşık sayı olduğunda sayımız bidördey olur.
  • Elemanların katsayıları bölünmüş karmaşık sayılar olursa sayı bölünmüş dördey olur.
  • Elemanların katsayıları ikili sayılar olursa sayı ikili dördey olur.

Bidördey ismi 1844 yılında Willam Rowan Hamilton tarafından konulmuştur.

Bidördeyin cebri tensör çarpımı olarak da düşünülebilir. Burada karmaşık sayılar kümesini dördey kümesini temsil ediyor. Aslında kısaca dördeylerin karmaşıklaştırılması ile de bidördeyler oluşur denilebilir.

Açıklama

dördey kümesinin birim temsilcileri ve kompleks sayılar olsun. O halde

sayısı bir bidördeydir.

Hamilton, normal dördeylerde kullanılan kavramları genişletmek için bivektör, bieşlenik, bitensör ve biversör terimleri tanıttı.

Hamilton'un bidördeyler hakkındaki ilk sergisi 1853 yılında Dördeyler Üzerine derslerinde geldi. 1866 yılında Hamilton'un oğlu Willam Edwin Hamilton ve 1899 yılında Charles Jasper Joly tarafından yapılan Dördeylerin Elementleri'nin baskıları bidördey kapsamını gerçek dördeyler lehine azalttı.

Cebirsel Yapılar

Bieşlenik

Bidördeylerin 2 tane eşleniği vardır.

  • Bieşlenik ya da bivektörün biskalerden çıkarılması;

  • Bidördeyin katsayılarının karmaşık eşleniği:

burada; , ve , 'dir

Bivektör

Kompleks bivektör bidördeyin vektör ksımıdır. bidördeyi için , biskaler, bivektör kısmını temsil ediyor.

Bidördey Analizi

Dördey analizindeki uygulamaları bidördeylere genişletir.

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9