Öklid'in Elementleri (bazen: Elementler, Yunanca: Stoicheia) İskenderiyeliAntik YunanÖklid'e (MÖ. 325–MÖ. 265) atfedilmiş 13 geometri kitabı bütünüdür. Öklid'in Elementler'i, tanımlar, aksiyomlar, önermeler ve bu önermelerin ispatlarından oluşur. Konuları iki ve üç boyutlu şekillerde öklidyen geometri, sayı teorisini, perspektif, konik kesitler, küresel geometri ve kuadrik yüzeyleri içerir. En eski geniş çaplı matematiksel tez olan Elementler hala ders kitabı olarak kullanılmaktadır. Kitapta kullanılan aksiyomatik yöntem birçok filozof ve matematikçiyi etkilemiştir.
Elementler, her kitabında belitler ve tanımlar seti ile başlar. Sonra bu belitlerden çıkardığı önermeleri sadece cetvel ve pergel kullanarak adımlarını göstererek ispat eder. Çarpma ve sayılar bile geometrik bir biçimde kullanılmış ve ispat edilmiştir. Her önermede kullanılan şekillerin çizilişi önceki önermelerin birinde gösterilmiştir.
19.yüzyıla kadar "geometri" olarak sadece öklidyen geometri biliniyordu ve mümkün olan tek geometri olarak kabul ediliyordu. 19. yüzyılda ise beşinci belit olan "paralel doğrular hiçbir zaman kesişmez" kabulünün yapılmadığı, hiperbolik ve eliptik açılardan oluşan Öklit Dışı Geometri keşfedilmiştir.
İçerik
1. kitap, 5 belit ve 5 genel geçer bilgiyi içerir. Pisagor teoremi, alanların ve açıların eşitliği, paralellik, üçgenin iç açılar toplamı ve birçok geometrik şeklin çizilmesini içerir.
2. kitap, "geometrik cebir" olarak da isimlendirilebilen dörtgenlerin eşliğini içerir ve altın oranın ve düz çizgilerden oluşan herhangi bir şekille eşit alana sahip bir karenin nasıl çizilebileceğini göstererek biter.
8. kitap, tam sayı örüntülerinin varlığı ve çizilmesi ile ilgilidir.
9. kitap, önceki iki kitabın önermeleri ile asal sayıların sonsuzluğunu ispatlar ve tüm çift tam kare sayıların oluşturulabileceğini gösterir.
10. kitap, tam kare olmayan sayıların kareköklerininirrasyonelliğini ispatlar ve Pisagor üçlüleri oluşturan bir denklem ortaya atar.[1]
11. kitap, 6.kitabı katı cisimlere uygular: diklik, paralellik, hacim ve paralel dörtgen prizmaların benzerlikleri.
12. kitap, konilerin, piramitlerin ve silindirlerin hacimlerini integrasyonun atası olan tüketme yöntemini kullanarak detaylı inceler ve örneğin bir koninin hacminin, ona karşılık gelen silindirin hacmine oranının üçte biri olduğunu ispatlar. Bir kürenin hacminin, yarıçapının küpüyle orantılı olduğunu göstererek sonlanır.
13. kitap, bir kürenin içine 5 Platonik cismi çizer ve kenarlarının uzunluğunu kürenin çapına oranlar.
1557: Jean Magnien tarafından Pierre de Montdoré [Stephanos Gracilis tarafından gözden geçirildi], (sadece önermelerin özgün Yunan ve Latin çevirisini içerir)
^Encyclopaedia of the history of science: technology: and medicine in non-western cultures, 1997
Kaynakça
W. W. Rouse Ball (1908). A short account of the history of mathematics. ISBN978-0-486-20630-1.
Thomas Little Heath (1956). The Thirteen Books of the Elements. 0-486-60088-2 (vol. 1), 0-486-60089-0 (vol. 2), 0-486-60090-4 (vol. 3), Heath'in yetkin çevirisine ilaveten kapsamlı tarihsel araştırma ve metin boyunca ayrıntılı yorumları içerir.