Share to: share facebook share twitter share wa share telegram print page

 

외적

선형대수학에서 외적(外積, outer product)이란 벡터텐서곱을 일컫는 말이다. 예를 들어, 열벡터로 표현되는 두 벡터를 외적하게 되면 행렬을 얻게 된다. 이 이름은 내적의 반대말에서 나왔는데, 두 벡터를 내적하면 스칼라를 얻지만, 외적하면 스칼라가 나오지 않기 때문이다.

정의

행렬에서의 정의

두 벡터의 외적 와 같이 두 벡터를 곱하는 것을 말한다. 여기서, 은 실수공간 에서 정의되는 열벡터, 에서 정의되는 열벡터를 말한다. 예를 들어, , 인 경우 .

와 같이 외적을 쓸 수 있다.

좀 더 복잡한 복소수공간 에서 정의되는 벡터의 경우, 외적은 전치연산 대신에 복소켤레전치 를 사용해

로 정의된다.

내적과의 비교

만약 이면 아래와 같이 전치의 순서를 바꾸어 두 열벡터를 곱할 수 있다.

이 연산의 경우 외적과 달리 스칼라( 행렬)이 결과로 나오게 된다. 이 연산은 유클리드 공간내적으로 알려져 있고, 점곱이라 하기도 한다.

추상적 정의

주어진 벡터 코벡터 의 텐서곱 동형사상 하의 사상 을 준다.

구체적으로, 외적은 주어진 에 대해

로 정의된다. 여기서 로 계산된 와 곱하면 스칼라를 주게 된다.

다시말하면, 외적은 의 합성이다.

내적과의 비교

만약 이면, 코벡터 와 벡터 쌍대의 쌍대연산 를 통해 곱할 수 있다. 때로 이 연산은 내적이라 불리기도 한다.

같이 보기

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9