Share to: share facebook share twitter share wa share telegram print page

 

Application de Poincaré

Dans la section de Poincaré S, l'application de Poincaré P projette le point x sur P(x).

En mathématiques, particulièrement en système dynamique, une application de Poincaré, nommée en l'honneur de Henri Poincaré, est une application liée à une orbite périodique (en) dans l'espace d'états d'un système dynamique et un certain sous-espace de dimension moindre, appelé la section de Poincaré, transverse au flot du système. Plus précisément, on considère une orbite suffisamment proche d'une orbite périodique, avec une condition initiale sur la section de Poincaré, et on observe le point auquel cette orbite revient à la section pour la première fois, d'où ses autres noms, application de premier retour ou application de récurrence. La transversalité de la section de Poincaré fait référence au fait que l'orbite périodique commence au travers du flot du sous-espace et non pas de façon parallèle à celui-ci. Une orbite est périodique si et seulement si sa condition initiale est un point fixe de l'application de Poincaré.

Des théorèmes d'existence de solutions périodiques d'équations différentielles non linéaires (autonomes et non autonomes) découlent de l'utilisation de la théorie du degré topologique, en particulier du théorème du point fixe de Brouwer, pour l'application de Poincaré. De plus des approximations numériques de ces solutions périodiques et de leur période - dans le cas des systèmes autonomes- sont obtenues par la résolution numérique des points fixes de l'application de Poincaré, par l'intermédiaire d'applications de Poincaré approchées à l'aide des méthodes de discrétisation pour les problèmes de Cauchy[1].

Une application de Poincaré peut être vue comme un système dynamique discret, avec un espace d'état de dimension égale à celle du système dynamique continu original, moins une. Comme ce nouveau système dynamique conserve plusieurs propriétés des orbites périodiques et quasi périodiques du système original et comme le nouveau système comporte un espace d'états de dimension inférieure, il est souvent utile pour l'analyse du système original. Par contre, ceci n'est pas toujours possible en pratique, puisqu'il n'existe aucune méthode générale de construction de l'application de Poincaré.

Une application de Poincaré diffère d'un graphe de récurrence (en) du fait que c'est l'espace et non le temps qui détermine lorsqu'un point est traité. Par exemple, le locus de la Lune au moment où la Terre est à l'apside est un graphe de récurrence, tandis que le locus de la Lune au moment où elle passe au travers du plan perpendiculaire à l'orbite terrestre et passant au travers du Soleil au périhélie est une application de Poincaré. L'application de Poincaré a été utilisée par Michel Hénon pour l'étude du mouvement des étoiles dans une galaxie : le chemin emprunté par une étoile, lorsque projeté sur un plan, a l'apparence d'un désordre inscrutable, tandis que l'application de Poincaré en montre la structure plus clairement.

Références

  1. Marcel Strasberg, Recherche des solutions périodiques d’équations différentielles non linéaires par des méthodes de discrétisation in Janssens Paul, Mawhin Jean, Rouche Nicolas.

Bibliographie

  • (en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Poincaré map » (voir la liste des auteurs).
  • Lev Pontriaguine, Équations différentielles ordinaires, Moscou, Éditions Mir, 1969, (p 245. pour l'application de Poincaré).
  • Jean Mawhin, TOPOLOGICAL FIXED POINT THEORY AND NONLINEAR DIFFERENTIAL EQUATIONS In : Brown, R.F.; Furi, M.; Gorniewicz, L.; Jiang, B. (Eds.), HANDBOOK OF TOPOLOGICAL FIXED POINT THEORY, Springer, 2005; pp. 862-899.
  • N. Rouche, J. Mawhin, Equations différentielles ordinaires, Tome 1 : Théorie générale, Masson, Paris, 1973
  • N. Rouche, J. Mawhin, Equations différentielles ordinaires, Tome 2: stabilité et solutions périodiques Masson, Paris 1973.
  • Janssens Paul, Mawhin Jean, Rouche Nicolas, (ed.), Equations différentielles et fonctionnelles non linéaires : actes de la Conférence internationale \"Equa-Diff 73" tenue à Bruxelles et Louvain-La-Neuve du 3 au , Actualités scientifiques et industrielles, Hermann, Paris, 1973.
  • Jean Mawhin, The Brouwer fixed point theorem and differential equations: a nonlinear story In: Thomas Archibald, Craig Fraser, Ivor Grattan-Guinness (eds.), The History of Differential Equations 1670 - 1950, Mathematisches Forschungsinstitut Oberwolfach Report 51/2004, pp. 2782-2784.
  • M. HENON, The numerical computation of the Poincaré Map, Physica SD (1982) 412-414

Voir aussi

Liens externes


Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9