Share to: share facebook share twitter share wa share telegram print page

 

Punto singular

Un punto singular de una función es un punto donde la función es continua pero la derivada en dicho punto es discontinua[1][2]​ (más exactamente tiene una discontinuidad no evitable de primera especie).

  1. , función continua.
  2. , no derivable.

Los puntos singulares son los únicos puntos en donde una función es continua, pero no puede trazarse una recta tangente a la función en dicho punto.

En un punto singular, esto no se cumple, las derivadas no laterales forman un ángulo no llano lo que le da el nombre a este tipo de punto, también se denominan puntos angulosos. Además, como consecuencia, no existe la normal en este punto. Además existen funciones tales que todos sus puntos son angulosos, o más exactamente donde no existe la derivada en ningún punto a pesar de que su grafo es una curva continua, uno de los primeros ejemplos de este tipo de funciones lo constituyó la función de Weierstrass:

siendo los números reales a y b tales que:

Ejemplos

Función continua y no derivable en a
Función creciente para x < a.
Función decreciente para x > a.
Para x < a es Función convexa.
Para x > a es Función convexa.
Para x = a máximo relativo.

Función continua y no derivable en a
Función creciente para x < a.
Función decreciente para x > a.
Para x < a es Función convexa.
Para x > a es Función cóncava.
Para x = a máximo relativo.

Función continua y no derivable en a
Función creciente para x < a.
Función decreciente para x > a.
Para x < a es Función convexa.
Para x > a es Función cóncava..
Para x = a máximo relativo.

Función continua y no derivable en a
Función creciente para x < a.
Función decreciente para x > a.
Para x < a es Función convexa.
Para x > a es Función cóncava..
Para x = a máximo relativo.

Función continua y no derivable en a
Función creciente para x < a.
Función creciente para x > a.
Para x < a es Función convexa.
Para x > a es Función convexa.

Función continua y no derivable en a
Función creciente para x < a.
Función creciente para x > a.
Para x < a es Función convexa.
Para x > a es Función cóncava.

Función continua y no derivable en a
Función creciente para x < a.
Función creciente para x > a.
Para x < a es Función convexa.
Para x > a es Función convexa.

Función continua y no derivable en a
Función creciente para x < a.
Función creciente para x > a.
Para x < a es Función convexa.
Para x > a es Función cóncava.
Para x = a es Punto de inflexión.

Véase también

Notas y referencias

  1. García Pineda, Pilar; Núñez del Prado, José Antonio; Sebastián Gómez, Alberto (2007). «6.3». Iniciación a la matemática universitaria (1 edición). Editorial Paraninfo. p. 141. ISBN 978-84-9732-479-3. 
  2. Diccionario de ciencias (1 edición). Editorial Complutense. 2000. p. 564. ISBN 84-89784-80-9. 

Bibliografía

  1. Barrios García, Javier A; Carrillo Fernández, Marianela (2005). Análisis de funciones en economía y empresa. Díaz de Santos. p. 80. ISBN 84-7978-660-4. 
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9