Share to: share facebook share twitter share wa share telegram print page

 

General Leibniz rule

In calculus, the general Leibniz rule,[1] named after Gottfried Wilhelm Leibniz, generalizes the product rule for the derivative of the product of two (which is also known as "Leibniz's rule"). It states that if and are n-times differentiable functions, then the product is also n-times differentiable and its n-th derivative is given by where is the binomial coefficient and denotes the jth derivative of f (and in particular ).

The rule can be proven by using the product rule and mathematical induction.

Second derivative

If, for example, n = 2, the rule gives an expression for the second derivative of a product of two functions:

More than two factors

The formula can be generalized to the product of m differentiable functions f1,...,fm. where the sum extends over all m-tuples (k1,...,km) of non-negative integers with and are the multinomial coefficients. This is akin to the multinomial formula from algebra.

Proof

The proof of the general Leibniz rule[2]: 68–69  proceeds by induction. Let and be -times differentiable functions. The base case when claims that: which is the usual product rule and is known to be true. Next, assume that the statement holds for a fixed that is, that

Then, And so the statement holds for , and the proof is complete.

Relationship to the binomial theorem

The Leibniz rule bears a strong resemblance to the binomial theorem, and in fact the binomial theorem can be proven directly from the Leibniz rule by taking and which gives

and then dividing both sides by [2]: 69 

Multivariable calculus

With the multi-index notation for partial derivatives of functions of several variables, the Leibniz rule states more generally:

This formula can be used to derive a formula that computes the symbol of the composition of differential operators. In fact, let P and Q be differential operators (with coefficients that are differentiable sufficiently many times) and Since R is also a differential operator, the symbol of R is given by:

A direct computation now gives:

This formula is usually known as the Leibniz formula. It is used to define the composition in the space of symbols, thereby inducing the ring structure.

See also

References

  1. ^ Olver, Peter J. (2000). Applications of Lie Groups to Differential Equations. Springer. pp. 318–319. ISBN 9780387950006.
  2. ^ a b Spivey, Michael Zachary (2019). The Art of Proving Binomial Identities. Boca Raton: CRC Press, Taylor & Francis Group. ISBN 9781351215817.
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9