Test for series convergence
In mathematics , Dirichlet's test is a method of testing for the convergence of a series that is especially useful for proving conditional convergence . It is named after its author Peter Gustav Lejeune Dirichlet , and was published posthumously in the Journal de Mathématiques Pures et Appliquées in 1862.[ 1]
Statement
The test states that if
(
a
n
)
{\displaystyle (a_{n})}
is a monotonic sequence of real numbers with
lim
n
→
∞
a
n
=
0
{\textstyle \lim _{n\to \infty }a_{n}=0}
and
(
b
n
)
{\displaystyle (b_{n})}
is a sequence of real numbers or complex numbers with bounded partial sums, then the series
∑
n
=
1
∞
a
n
b
n
{\displaystyle \sum _{n=1}^{\infty }a_{n}b_{n}}
converges.[ 2] [ 3] [ 4]
Proof
Let
S
n
=
∑
k
=
1
n
a
k
b
k
{\textstyle S_{n}=\sum _{k=1}^{n}a_{k}b_{k}}
and
B
n
=
∑
k
=
1
n
b
k
{\textstyle B_{n}=\sum _{k=1}^{n}b_{k}}
.
From summation by parts , we have that
S
n
=
a
n
B
n
+
∑
k
=
1
n
−
1
B
k
(
a
k
−
a
k
+
1
)
{\textstyle S_{n}=a_{n}B_{n}+\sum _{k=1}^{n-1}B_{k}(a_{k}-a_{k+1})}
. Since the magnitudes of the partial sums
B
n
{\displaystyle B_{n}}
are bounded by some M and
a
n
→
0
{\displaystyle a_{n}\to 0}
as
n
→
∞
{\displaystyle n\to \infty }
, the first of these terms approaches zero:
|
a
n
B
n
|
≤
|
a
n
M
|
→
0
{\displaystyle |a_{n}B_{n}|\leq |a_{n}M|\to 0}
as
n
→
∞
{\displaystyle n\to \infty }
.
Furthermore, for each k ,
|
B
k
(
a
k
−
a
k
+
1
)
|
≤
M
|
a
k
−
a
k
+
1
|
{\displaystyle |B_{k}(a_{k}-a_{k+1})|\leq M|a_{k}-a_{k+1}|}
.
Since
(
a
n
)
{\displaystyle (a_{n})}
is monotone, it is either decreasing or increasing:
If
(
a
n
)
{\displaystyle (a_{n})}
is decreasing,
∑
k
=
1
n
M
|
a
k
−
a
k
+
1
|
=
∑
k
=
1
n
M
(
a
k
−
a
k
+
1
)
=
M
∑
k
=
1
n
(
a
k
−
a
k
+
1
)
,
{\displaystyle \sum _{k=1}^{n}M|a_{k}-a_{k+1}|=\sum _{k=1}^{n}M(a_{k}-a_{k+1})=M\sum _{k=1}^{n}(a_{k}-a_{k+1}),}
which is a telescoping sum that equals
M
(
a
1
−
a
n
+
1
)
{\displaystyle M(a_{1}-a_{n+1})}
and therefore approaches
M
a
1
{\displaystyle Ma_{1}}
as
n
→
∞
{\displaystyle n\to \infty }
. Thus,
∑
k
=
1
∞
M
(
a
k
−
a
k
+
1
)
{\textstyle \sum _{k=1}^{\infty }M(a_{k}-a_{k+1})}
converges.
If
(
a
n
)
{\displaystyle (a_{n})}
is increasing,
∑
k
=
1
n
M
|
a
k
−
a
k
+
1
|
=
−
∑
k
=
1
n
M
(
a
k
−
a
k
+
1
)
=
−
M
∑
k
=
1
n
(
a
k
−
a
k
+
1
)
,
{\displaystyle \sum _{k=1}^{n}M|a_{k}-a_{k+1}|=-\sum _{k=1}^{n}M(a_{k}-a_{k+1})=-M\sum _{k=1}^{n}(a_{k}-a_{k+1}),}
which is again a telescoping sum that equals
−
M
(
a
1
−
a
n
+
1
)
{\displaystyle -M(a_{1}-a_{n+1})}
and therefore approaches
−
M
a
1
{\displaystyle -Ma_{1}}
as
n
→
∞
{\displaystyle n\to \infty }
. Thus, again,
∑
k
=
1
∞
M
(
a
k
−
a
k
+
1
)
{\textstyle \sum _{k=1}^{\infty }M(a_{k}-a_{k+1})}
converges.
So, the series
∑
k
=
1
∞
B
k
(
a
k
−
a
k
+
1
)
{\textstyle \sum _{k=1}^{\infty }B_{k}(a_{k}-a_{k+1})}
converges by the direct comparison test to
∑
k
=
1
∞
M
(
a
k
−
a
k
+
1
)
{\textstyle \sum _{k=1}^{\infty }M(a_{k}-a_{k+1})}
. Hence
S
n
{\displaystyle S_{n}}
converges.[ 2] [ 4]
Applications
A particular case of Dirichlet's test is the more commonly used alternating series test for the case[ 2] [ 5]
b
n
=
(
−
1
)
n
⟹
|
∑
n
=
1
N
b
n
|
≤
1.
{\displaystyle b_{n}=(-1)^{n}\Longrightarrow \left|\sum _{n=1}^{N}b_{n}\right|\leq 1.}
Another corollary is that
∑
n
=
1
∞
a
n
sin
n
{\textstyle \sum _{n=1}^{\infty }a_{n}\sin n}
converges whenever
(
a
n
)
{\displaystyle (a_{n})}
is a decreasing sequence that tends to zero. To see that
∑
n
=
1
N
sin
n
{\displaystyle \sum _{n=1}^{N}\sin n}
is bounded, we can use the summation formula[ 6]
∑
n
=
1
N
sin
n
=
∑
n
=
1
N
e
i
n
−
e
−
i
n
2
i
=
∑
n
=
1
N
(
e
i
)
n
−
∑
n
=
1
N
(
e
−
i
)
n
2
i
=
sin
1
+
sin
N
−
sin
(
N
+
1
)
2
−
2
cos
1
.
{\displaystyle \sum _{n=1}^{N}\sin n=\sum _{n=1}^{N}{\frac {e^{in}-e^{-in}}{2i}}={\frac {\sum _{n=1}^{N}(e^{i})^{n}-\sum _{n=1}^{N}(e^{-i})^{n}}{2i}}={\frac {\sin 1+\sin N-\sin(N+1)}{2-2\cos 1}}.}
Improper integrals
An analogous statement for convergence of improper integrals is proven using integration by parts . If the integral of a function f is uniformly bounded over all intervals , and g is a non-negative monotonically decreasing function , then the integral of fg is a convergent improper integral.
Notes
References
Apostol, Tom M. (1967) [1961]. Calculus . Vol. 1 (2nd ed.). John Wiley & Sons. ISBN 0-471-00005-1 .
Hardy, G. H. , A Course of Pure Mathematics , Ninth edition, Cambridge University Press, 1946. (pp. 379–380).
Rudin, Walter (1976) [1953]. Principles of mathematical analysis (3rd ed.). New York: McGraw-Hill. ISBN 0-07-054235-X . OCLC 1502474 .
Spivak, Michael (2008) [1967]. Calculus (4th ed.). Houston, TX: Publish or Perish. ISBN 978-0-914098-91-1 .
Voxman, William L., Advanced Calculus: An Introduction to Modern Analysis , Marcel Dekker, Inc., New York, 1981. (§8.B.13–15) ISBN 0-8247-6949-X .
External links