Share to: share facebook share twitter share wa share telegram print page

 

Dirichlet's test

In mathematics, Dirichlet's test is a method of testing for the convergence of a series that is especially useful for proving conditional convergence. It is named after its author Peter Gustav Lejeune Dirichlet, and was published posthumously in the Journal de Mathématiques Pures et Appliquées in 1862.[1]

Statement

The test states that if is a monotonic sequence of real numbers with and is a sequence of real numbers or complex numbers with bounded partial sums, then the series

converges.[2][3][4]

Proof

Let and .

From summation by parts, we have that . Since the magnitudes of the partial sums are bounded by some M and as , the first of these terms approaches zero: as .

Furthermore, for each k, .

Since is monotone, it is either decreasing or increasing:

  • If is decreasing, which is a telescoping sum that equals and therefore approaches as . Thus, converges.
  • If is increasing, which is again a telescoping sum that equals and therefore approaches as . Thus, again, converges.

So, the series converges by the direct comparison test to . Hence converges.[2][4]

Applications

A particular case of Dirichlet's test is the more commonly used alternating series test for the case[2][5]

Another corollary is that converges whenever is a decreasing sequence that tends to zero. To see that is bounded, we can use the summation formula[6]

Improper integrals

An analogous statement for convergence of improper integrals is proven using integration by parts. If the integral of a function f is uniformly bounded over all intervals, and g is a non-negative monotonically decreasing function, then the integral of fg is a convergent improper integral.

Notes

  1. ^ Démonstration d’un théorème d’Abel. Journal de mathématiques pures et appliquées 2nd series, tome 7 (1862), pp. 253–255 Archived 2011-07-21 at the Wayback Machine. See also [1].
  2. ^ a b c Apostol 1967, pp. 407–409
  3. ^ Spivak 2008, p. 495
  4. ^ a b Rudin 1976, p. 70
  5. ^ Rudin 1976, p. 71
  6. ^ "Where does the sum of $\sin(n)$ formula come from?".

References

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9