Share to: share facebook share twitter share wa share telegram print page

 

Conceptual graph

A conceptual graph (CG) is a formalism for knowledge representation. In the first published paper on CGs, John F. Sowa used them to represent the conceptual schemas used in database systems.[1] The first book on CGs applied them to a wide range of topics in artificial intelligence, computer science, and cognitive science.[2]

Research branches

Since 1984, the model has been developed along three main directions: a graphical interface for first-order logic, a diagrammatic calculus of logics, and a graph-based knowledge representation and reasoning model.[2]

Graphical interface for first-order logic

Elsie the cat is sitting on a mat

In this approach, a formula in first-order logic (predicate calculus) is represented by a labeled graph.

A linear notation, called the Conceptual Graph Interchange Format (CGIF), has been standardized in the ISO standard for common logic.

The diagram above is an example of the display form for a conceptual graph. Each box is called a concept node, and each oval is called a relation node. In CGIF, this CG would be represented by the following statement:

[Cat Elsie] [Sitting *x] [Mat *y] (agent ?x Elsie) (location ?x ?y)

In CGIF, brackets enclose the information inside the concept nodes, and parentheses enclose the information inside the relation nodes. The letters x and y, which are called coreference labels, show how the concept and relation nodes are connected. In CLIF, those letters are mapped to variables, as in the following statement:

(exists ((x Sitting) (y Mat)) (and (Cat Elsie) (agent x Elsie) (location x y)))

As this example shows, the asterisks on the coreference labels *x and *y in CGIF map to existentially quantified variables in CLIF, and the question marks on ?x and ?y map to bound variables in CLIF. A universal quantifier, represented @every*z in CGIF, would be represented forall (z) in CLIF.

Reasoning can be done by translating graphs into logical formulas, then applying a logical inference engine.

Diagrammatic calculus of logics

Another research branch continues the work on existential graphs of Charles Sanders Peirce, which were one of the origins of conceptual graphs as proposed by Sowa. In this approach, developed in particular by Dau (Dau 2003), conceptual graphs are conceptual diagrams rather than graphs in the sense of graph theory, and reasoning operations are performed by operations on these diagrams.

Graph-based knowledge representation and reasoning model

Key features of GBKR, the graph-based knowledge representation and reasoning model developed by Chein and Mugnier and the Montpellier group, can be summarized as follows:[3]

  • All kinds of knowledge (ontology, rules, constraints and facts) are labeled graphs, which provide an intuitive and easily understandable means to represent knowledge.
  • Reasoning mechanisms are based on graph notions, basically the classical notion of graph homomorphism; this allows, in particular, to link basic reasoning problems to other fundamental problems in computer science (e.g., problems concerning conjunctive queries in relational databases, or constraint satisfaction problems).
  • The formalism is logically founded, i.e., it has a semantics in first-order logic and the inference mechanisms are sound and complete with respect to deduction in first-order logic.
  • From a computational viewpoint, the graph homomorphism notion was recognized in the 1990s as a central notion, and complexity results and efficient algorithms have been obtained in several domains.

COGITANT and COGUI are tools that implement the GBKR model. COGITANT is a library of C++ classes that implement most of the GBKR notions and reasoning mechanisms. COGUI is a graphical user interface dedicated to the construction of a GBKR knowledge base (it integrates COGITANT and, among numerous functionalities, it contains a translator from GBKR to RDF/S and conversely).

See also

References

Bibliography

  • Chein, Michel; Mugnier, Marie-Laure (2009). Graph-based Knowledge Representation: Computational Foundations of Conceptual Graphs. Springer. doi:10.1007/978-1-84800-286-9. ISBN 978-1-84800-285-2.
  • Dau, F. (2003). The Logic System of Concept Graphs with Negation and Its Relationship to Predicate Logic. Lecture Notes in Computer Science. Vol. 2892. Springer.
  • Sowa, John F. (July 1976). "Conceptual Graphs for a Data Base Interface" (PDF). IBM Journal of Research and Development. 20 (4): 336–357. doi:10.1147/rd.204.0336.
  • Sowa, John F. (1984). Conceptual Structures: Information Processing in Mind and Machine. Reading, MA: Addison-Wesley. ISBN 978-0-201-14472-7.
  • Velardi, Paola; Pazienza, Maria Teresa; De' Giovanetti, Mario (March 1988). "Conceptual graphs for the analysis and generation of sentences". IBM Journal of Research and Development. 32 (2). IBM Corp. Riverton, NJ, USA: 251–267. doi:10.1147/rd.322.0251.
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9