Share to: share facebook share twitter share wa share telegram print page

 

Triviale Gruppe

Eine Gruppe in der Gruppentheorie ist trivial, wenn ihre Trägermenge genau ein Element enthält. Je zwei triviale Gruppen sind isomorph, die triviale Gruppe ist also bis auf Isomorphie eindeutig bestimmt. Jede Gruppe enthält die triviale Gruppe als Untergruppe.

Definition

Eine Gruppe ist trivial, wenn eine einelementige Menge ist.

Die Verknüpfung ist notwendigerweise durch

gegeben und ist das neutrale Element der Gruppe.

Beispiele

Beispiele für triviale Gruppen sind:

  • die triviale Gruppe der Addition ,
  • die triviale Gruppe der Multiplikation ,
  • die triviale Gruppe der Komposition von Abbildungen , wobei die Identitätsabbildung auf einer beliebigen Menge ist,
  • die zyklische Gruppe von Ordnung ,
  • die symmetrische Gruppe der Permutationen von ,
  • die alternierende Gruppe der geraden Permutationen von .

Eigenschaften

  • Alle trivialen Gruppen sind zueinander isomorph.
  • Da die Gruppenoperation kommutativ ist, ist die triviale Gruppe eine abelsche Gruppe.
  • Die einzige Untergruppe der trivialen Gruppe ist die triviale Gruppe selbst.
  • Die triviale Gruppe wird von der leeren Menge erzeugt: . Hierbei ergibt das leere Produkt nach üblicher Konvention das neutrale Element.
  • Jede Gruppe enthält die triviale Gruppe und sich selbst als (triviale) Normalteiler. Die triviale Gruppe wird daher meistens nicht als einfache Gruppe angesehen.
  • Für jede beliebige Gruppe gibt es genau einen Gruppenhomomorphismus und genau einen Gruppenhomomorphismus . Das heißt, dass in der Kategorie der Gruppen Grp die triviale Gruppe ein Nullobjekt ist.

Siehe auch

Literatur

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9