Share to: share facebook share twitter share wa share telegram print page

 

Nullring

Der Nullring oder triviale Ring ist in der Mathematik der bis auf Isomorphie eindeutig bestimmte Ring, der nur aus einem Element – dem Nullelement – besteht. Das Nullelement ist damit zugleich das Einselement des Rings. Der Nullring besitzt eine Reihe besonderer Eigenschaften, so ist er beispielsweise der einzige Ring, in dem jedes Element eine Einheit ist, und der einzige Ring mit Eins, in dem es kein maximales Ideal gibt. In der Kategorie der Ringe mit Eins ist der Nullring terminales Objekt und in der Kategorie aller Ringe das Nullobjekt.

Definition

Der Nullring ist ein Ring bestehend aus der einelementigen Menge versehen mit der einzig möglichen Addition gegeben durch

und der einzig möglichen Multiplikation gegeben durch

.

Das Element ist also zugleich das Nullelement und das Einselement des Rings.[1]

Eigenschaften

Der Nullring ist ein kommutativer Ring mit Eins. Da das Nullelement kein Nullteiler ist, ist der Nullring nullteilerfrei. Der Nullring ist der einzige Ring, in dem das Nullelement eine Einheit ist, und sogar der einzige Ring, in dem jedes Element eine Einheit ist. Nach dem Lemma von Zorn ist er der einzige unitäre Ring, in dem es kein maximales Ideal gibt.

Jeder Ring , in dem gilt, ist isomorph zum Nullring, denn dann gilt

für alle Elemente .[1] Man begegnet dem Nullring zum Beispiel, wenn man einen Ring nach sich selbst faktorisiert, oder indem man nach einem multiplikativen System, welches das Nullelement beinhaltet, lokalisiert.

Der Nullring ist der einzige Ring, bei dem die Division (die Umkehrung der Multiplikation) völlig uneingeschränkt für alle Elemente, und d. h. in diesem Fall auch durch 0, möglich ist: Das Ergebnis ist 0.

Der Nullring ist kein Körper, da für diese Strukturen immer gefordert wird. Er ist auch kein Integritätsring, da er für einen beliebigen Ring isomorph zu ist, der ganze Ring aber kein Primideal ist.

Kategorientheorie

In der Kategorie der Ringe mit Eins ist der Nullring terminales Objekt, das heißt von jedem Ring gibt es genau einen Morphismus in den Nullring. Weiterhin ist jeder Morphismus aus dem Nullring heraus bereits ein Isomorphismus.

In der Kategorie aller Ringe ist der Nullring sogar das Nullobjekt.

Siehe auch

Literatur

Einzelnachweise

  1. a b Artin: Algebra. 1998, S. 396.
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9