Share to: share facebook share twitter share wa share telegram print page

 

Meromorphe Funktion

Meromorphie ist eine Eigenschaft von bestimmten komplexwertigen Funktionen, die in der Funktionentheorie (einem Teilgebiet der Mathematik) behandelt werden.

Für viele Fragestellungen der Funktionentheorie ist der Begriff der holomorphen Funktion zu speziell. Dies liegt daran, dass der Kehrwert einer holomorphen Funktion an einer Nullstelle von eine Definitionslücke hat und somit dort auch nicht komplex differenzierbar ist. Man führt daher den allgemeineren Begriff der meromorphen Funktion ein, die auch isolierte Polstellen besitzen kann.

Meromorphe Funktionen lassen sich lokal als Laurentreihen mit abbrechendem Hauptteil darstellen. Ist ein Gebiet von , so bildet die Menge der auf meromorphen Funktionen einen Körper.

Definition

Auf den komplexen Zahlen

Es sei eine nichtleere offene Teilmenge der Menge der komplexen Zahlen und eine weitere Teilmenge von , die nur aus isolierten Punkten besteht. Eine Funktion heißt meromorph, wenn sie für Stellen aus definiert und holomorph ist und für Stellen aus Pole hat. wird als Polstellenmenge von bezeichnet.

Auf einer riemannschen Fläche

Sei eine riemannsche Fläche und eine offene Teilmenge von . Unter einer meromorphen Funktion auf verstehen wir eine holomorphe Funktion , wobei eine offene Teilmenge ist, so dass die folgenden Eigenschaften gelten:

  • Die Menge hat nur isolierte Punkte.
  • Für jeden Punkt gilt
.

Die Punkte aus der Menge werden Pole von genannt. Die Menge aller meromorphen Funktionen auf wird mit bezeichnet und bildet, falls zusammenhängend ist, einen Körper. Diese Definition ist natürlich äquivalent zur Definition auf den komplexen Zahlen, falls eine Teilmenge derer ist.

Beispiele

  • Alle holomorphen Funktionen sind auch meromorph, da ihre Polstellenmenge leer ist.
  • Die Kehrwertfunktion ist meromorph; ihre Polstellenmenge ist . Allgemeiner sind alle rationalen Funktionen
meromorph. Die Polstellenmenge ist hier jeweils eine Teilmenge der Nullstellenmenge des Nennerpolynoms.
  • Für jede meromorphe Funktion ist ihr Kehrwert ebenfalls meromorph.
  • Die Funktion ist nicht auf ganz (und auf keiner Umgebung von ) meromorph, da keine Polstelle, sondern eine wesentliche Singularität dieser Funktion ist.

Wichtige Sätze über meromorphe Funktionen sind: Satz von Mittag-Leffler, Residuensatz, Satz von Riemann-Roch.

Literatur

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9