Share to: share facebook share twitter share wa share telegram print page

 

Gerhard Huisken

Gerhard Huisken 2006

Gerhard Huisken (* 20. Mai 1958 in Hamburg) ist ein deutscher Mathematiker.

Leben

Huisken begann nach dem Abitur 1977 mit dem Studium der Mathematik an der Universität Heidelberg. Im Jahre 1982, ein Jahr nach der Diplomprüfung, promovierte er dort mit einer Arbeit über nichtlineare partielle Differentialgleichungen (Reguläre Kapillarflächen in negativen Gravitationsfeldern).[1]

In den Jahren 1983 bis 1984 arbeitete er im Zentrum für Mathematische Analysis der Australian National University in Canberra, wo er sich der Differentialgeometrie zuwandte, speziell Krümmungs-bedingten Flüssen (mean curvature flow) und Anwendungen in der Allgemeinen Relativitätstheorie. Ab 1985 wieder als Wissenschaftlicher Mitarbeiter an der Universität Heidelberg tätig, habilitierte er 1986. Nach einem Intermezzo als Gastprofessor an der University of California in San Diego arbeitete er von 1986 bis 1992 als Dozent (zunächst Lecturer, dann Reader) am Centre for Mathematical Analysis der Australian National University. 1991 war er Gastprofessor an der Stanford University, USA. Zwischen 1992 und 2002 hatte Huisken eine Professur an der Universität Tübingen inne, wobei er von 1996 bis 1998 das Amt des Dekans der Mathematischen Fakultät Tübingen ausübte. Von 1999 bis 2000 nahm er eine Gastprofessur an der Princeton University, USA, wahr.

Von 2002 bis 2013 war Huisken Direktor am Max-Planck-Institut für Gravitationsphysik in Golm bei Potsdam und zugleich Honorarprofessor an der Freien Universität Berlin sowie an der Universität Tübingen. Ab April 2013 ist er Direktor des Mathematischen Forschungsinstituts Oberwolfach und hat eine Professur an der Universität Tübingen inne. Am MPI für Gravitationsphysik ist er „Auswärtiges Wissenschaftliches Mitglied“.

Zu seinen Doktoranden gehört Simon Brendle.

Leistungen

Huisken arbeitet im Überschneidungsbereich von Analysis, Geometrie und Physik. Viele Phänomene der Mathematischen Physik und der Geometrie hängen eng zusammen mit veränderlichen Kurven, Flächen und Räumen.

Seine mathematischen Forschungsthemen sind außer der Analysis auch die Differentialgeometrie. Er befasst sich mit der Entwicklung der Form von Flächen im Zeitverlauf, das heißt, er untersucht die Deformation von Flächen, wobei die Regeln dieser Deformation durch die eigene Geometrie der Flächen bestimmt werden.

Gerhard Huisken leistete herausragende Beiträge zur allgemeinen Relativitätstheorie. Im Jahr 1997 konnte er gemeinsam mit Tom Ilmanen (ETH Zürich) die Penrose-Vermutung für schwarze Löcher im Fall dreidimensionaler Riemannscher Mannigfaltigkeiten mit positiver Skalarkrümmung beweisen.[2]

1998 war er Invited Speaker auf dem Internationalen Mathematikerkongress in Berlin (Evolution of hypersurfaces by their curvature in Riemannian Manifolds).

Mitgliedschaften

Huisken ist Mitglied der Heidelberger Akademie der Wissenschaften[3], der Berlin-Brandenburgischen Akademie der Wissenschaften, der Deutschen Akademie der Naturforscher Leopoldina (seit 2004) und der Academia Europaea (seit 2014).

2006 war er Mitglied des traditionell bis zur jeweiligen Preisverleihung geheim gehaltenen Auswahlkomitees der Internationalen Mathematischen Union, das im Rahmen des Internationalen Mathematikerkongresses über die Verleihung der Fields-Medaille entscheidet.[4] Er ist Fellow der American Mathematical Society.

Preise und Auszeichnungen

Schriften

  • Flow by mean curvature of convex surfaces into spheres, J. Differential Geom. 20 (1984), no. 1, 237–266.
  • Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature, Invent. Math. 84 (1986), no. 3, 463–480.
  • mit K. Ecker: Mean curvature evolution of entire graphs, Ann. of Math. (2) 130 (1989), no. 3, 453–471.
  • Asymptotic behavior for singularities of the mean curvature flow, J. Differential Geom. 31 (1990), no. 1, 285–299.
  • mit K. Ecker: Interior estimates for hypersurfaces moving by mean curvature, Invent. Math. 105 (1991), no. 3, 547–569.
  • mit S. T. Yau: Definition of center of mass for isolated physical systems and unique foliations by stable spheres with constant mean curvature, Invent. Math. 124 (1996), no. 1-3, 281–311.
  • mit C. Sinestrari: Convexity estimates for mean curvature flow and singularities of mean convex surfaces, Acta Math. 183 (1999), no. 1, 45–70
  • mit T. Ilmanen: The inverse mean curvature flow and the Riemannian Penrose inequality, J. Differential Geom. 59 (2001), no. 3, 353–437.
  • mit C. Sinestrari: Mean curvature flow with surgeries of two-convex hypersurfaces, Invent. Math. 175 (2009), no. 1, 137–221.
  • Evolution Equations in Geometry, in: Engquist, Schmid (Herausgeber): Mathematics Unlimited – 2001 and beyond, Springer 2001

Einzelnachweise

  1. Gerhard Huisken im Mathematics Genealogy Project (englisch) Vorlage:MathGenealogyProject/Wartung/id verwendet.
  2. Huisken, Ilmanen The Riemann-Penrose Inequality Int.Math.Research Notes Bd.20, 1997, S. 1045–1058, The inverse mean curvature flow and the Riemannian Penrose Inequality, Journal of Differential Geometry, Bd. 59, 2001, S. 353–437.
  3. Gabriele Dörflinger: Mathematik in der Heidelberger Akademie der Wissenschaften. 2014, S. 28–29.
  4. The Fields Medalists, chronologically listed, abgerufen am 18. Januar 2021.
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9