Very Large Telescope
El Very Large Telescope o VLT (Telescopi molt gran en anglès) és un sistema de quatre telescopis òptics separats, envoltats per diversos instruments menors. Cada un dels quatre instruments principals és un telescopi reflector amb un mirall de 8,2 metres. El projecte VLT forma part de l'Observatori Europeu Austral (ESO), la major organització astronòmica d'Europa. La resolució amb la que opera aquest sistema de telescopis equival a distingir, des del Regne Unit, els fars davanters d'un automòbil situat a Austràlia.[1] El VLT es troba a l'Observatori Paranal al Cerro Paranal, una muntanya de 2.635 metres localitzada al desert d'Atacama, al nord de Xile. Igual que la major part dels observatoris mundials, el lloc ha estat elegit per la seva ubicació, ja que dista molt de zones de contaminació lumínica i té un clima desèrtic, en el qual abunden les nits clares. El VLT consisteix en un grup de quatre telescopis grans i d'un interferòmetre (VLTI) que s'usa per a observacions amb resolució més alta. Els telescopis han estat anomenats segons alguns objectes astronòmics en la llengua local, el mapudungun: Antu (el Sol), Kueyen (la Lluna), Melipal (la Creu del Sud) i Yepun ( Venus). Teòricament el VLTI hauria de resoldre fàcilment els mòduls lunars (5 metres d'amplada) deixats sobre la superfície lunar per les missions Apollo. No obstant això, hi ha algunes dificultats. A causa de la gran quantitat de miralls involucrats en la manera interferomètric, una important fracció de la llum es perd abans d'arribar al detector. La tècnica d'interferometria és molt eficient només per a observar objectes prou petits perquè tota la seva llum estigui concentrada. No és factible observar un objecte amb una brillantor superficial relativament baix, com la Lluna, perquè la seva llum és molt tènue. Només objectes amb temperatures superiors a 1000 °C tenen una brillantor superficial prou elevada com per ser observats a la regió de l'infraroig mitjà, i han d'estar a diversos milers de graus Celsius per poder observar-los en l'infraroig proper amb el VLTI. Això inclou la majoria de les estrelles en el veïnatge del Sol i molts objectes extragalàctics, com a nuclis brillants de galàxies actives,[2] però deixa fora de les observacions interferomètriques a la majoria dels objectes del sistema solar. Informació generalEl VLT consisteix en un grup de quatre telescopis grans i d'un interferòmetre (VLTI) que s'usa per a observacions amb resolució més alta. Els telescopis han estat nomenats segons alguns objectes astronòmics a mapudungun: Antu (el Sol), Kueyen (la Lluna), Melipal (la Creu del Sud) i Yepun (Venus). El VLT pot operar de tres maneres:
En la manera de quatre telescopis, cadascun dels telescopis es troben entre els més grans del món i opera amb èxit. El gran mirall de 8,2 metres és mantingut en posició per un sistema d'òptica activa, mentre que un sistema d'òptica adaptativa anomenat NAOS, elimina l'escassa aberració introduïda per l'atmosfera sobre el turó Paranal. En el mode interferomètric (VLTI), els quatre telescopis tenen la mateixa capacitat de recol·lecció de llum d'un únic telescopi de 16 metres de diàmetre i es converteixen en l'instrument òptic més gran del món. La resolució, en aquest mode d'observació, és semblant a un que tingui un diàmetre semblant a la distància entre els telescopis (al voltant de 100 metres). El VLTI (acrònim en anglès - Very Large Telescope Interferometer) té com a objectiu una resolució òptica de 0,001 segons d'arc a una longitud d'ona d'1 µm, prop de l'infraroig. És un angle de 0.000000005 radians, equivalent a resoldre un objecte de 2 metres a la distància que separa la Terra de la Lluna. Teòricament, el VLTI hauria de resoldre fàcilment els mòduls lunars (5 metres d'amplada) deixats sobre la superfície lunar per les missions Apollo. No obstant això, hi ha algunes dificultats. A causa de la gran quantitat de miralls involucrats en el mode interferomètric, una fracció important de la llum es perd abans d'arribar al detector. La tècnica d'interferometria és molt eficient només per observar objectes prou petits perquè tota la seva llum estigui concentrada. No és factible observar un objecte amb una brillantor superficial relativament baixa, com la Lluna, perquè la seva llum és molt tènue. Només objectes amb temperatures superiors a 1000 °C tenen una brillantor superficial prou elevada per a ser observats a la regió de l'infraroig mitjà, i han d'estar a diversos milers de graus Celsius per poder observar-los a l'infraroig proper amb el VLTI. Això inclou la majoria de les estrelles al veïnat del Sol i molts objectes extragalàctics, com a nuclis brillants de galàxies actives,[3] però deixa fora de les observacions interferomètriques la majoria dels objectes del sistema solar. InstrumentsEls instruments del VLT:[4]
Diversos instruments del VLT de segona generació estan ara sota desenvolupament:
Resultats científicsEls resultats del VLT han portat a la publicació d'una mitjana de més d'un article científic revisat per parells al dia. Per exemple, el 2017, es van publicar més de 600 articles científics arbitrats basats en dades del VLT.[6] Els descobriments científics del telescopi inclouen imatges directes de Beta Pictoris b, el primer planeta extrasolar així fotografiat,[7] rastrejant estrelles individuals que es mouen al voltant del forat negre supermassiu al centre de la Via Làctia,[8] i observant la resplendor de l'esclat de raigs gamma més llunyà conegut.[9] El 2018, el VLT va ajudar a dur a terme la primera prova exitosa de la relativitat general d'Einstein sobre el moviment d'una estrella que passa a través del camp gravitatori extrem a prop del forat negre supermassiu, aquest és el desplaçament al vermell gravitacional.[10] De fet, l'observació s'ha realitzat durant més de 26 anys amb els instruments d'òptica adaptativa SINFONI i NACO al VLT, mentre que el nou enfocament del 2018 també va fer servir l'instrument combinador de feixos GRAVITY.[11] L'equip del Centre Galàctic de l'Institut Max Planck de Física Extraterrestre (MPE) va usar l'observació per revelar els efectes per primera vegada.[12] Altres descobriments amb la firma de VLT inclouen la detecció de molècules de monòxid de carboni en una galàxia ubicada a gairebé onze mil milions d'anys llum de distància per primera vegada, una gesta que havia estat difícil d'assolir durant 25 anys. Això ha permès als astrònoms obtenir la mesura més precisa de la temperatura còsmica en una època tan remota.[13] Un altre estudi important va ser el de les violentes flamarades del forat negre supermassiu al centre de la Via Làctia. El VLT i APEX es van unir per revelar material que s'estira mentre orbita a la intensa gravetat a prop del forat negre central.[14] Utilitzant el VLT, els astrònoms també han estimat l'edat d'estrelles extremadament antigues al cúmul NGC 6397. Segons els models d'evolució estel·lar, es va descobrir que dues estrelles tenen 13,4 ± 0,800 milions d'anys, és a dir, són de la primera era de formació estel·lar a l'univers.[15] També han analitzat l'atmosfera al voltant d'un exoplaneta súper-terra per primera vegada utilitzant el VLT. El planeta, que es coneix com GJ 1214b, es va estudiar quan va passar davant de la seva estrella mare i part de la llum de l'estrella va travessar l'atmosfera del planeta.[16] En total, dels 10 principals descobriments realitzats als observatoris d'ESO, set van fer ús del VLT.[17] Referències
Vegeu també
Enllaços externs
|