Share to: share facebook share twitter share wa share telegram print page

 

Velocitat orbital

La velocitat orbital d'un cos, generalment un planeta, un satèl·lit natural, un satèl·lit artificial, o una estrella múltiple, és la velocitat a la qual orbita al voltant del baricentre d'un sistema, normalment al voltant d'un altre cos més massiu. Aquest terme s'utilitza tant per referir-se a la velocitat orbital mitjana al llarg de l'òrbita, com a la velocitat orbital instantània, en un punt concret d'aquesta òrbita.[1]

Per un cos orbitant al voltant d'un altre cos molt més massiu, la velocitat orbital en un punt qualsevol de l'òrbita es pot calcular a partir de la distància al cos central en aquell punt, i de l'energia mecànica del cos, que és la suma de la seva energia cinètica i potencial i que és independent de la posició en l'òrbita. Per al cas d'una òrbita el·líptica, l'energia mecànica és negativa i la velocitat orbital () és:[1]

òrbita el·líptica:

Aquesta és l'equació vis-viva, on:

  • és la constant gravitacional
  • és la massa del cos central
  • és la distància entre el cos que orbita i el cos central
  • és el semieix major

Si la velocitat del cos augmenta prou perquè l'energia mecànica sigui zero, l'òrbita serà parabòlica i el cos aconseguirà la velocitat d'escapament:

òrbita parabòlica:

Si la velocitat augmenta més encara, l'òrbita serà hiperbòlica i la velocitat:

òrbita hiperbòlica:

Velocitat orbital mitjana

La velocitat orbital mitjana es pot deduir a partir d'observacions del període orbital i el semieix major de l'òrbita, o també a partir del valor de les masses dels dos cossos i el semieix major.[2]

on és la velocitat orbital, r és la llargada del semieix major, T és el període orbital, m és la massa de l'altre cos, i G és la constant gravitacional. Això és només una aproximació vàlida quan la massa del cos que orbita és menyspreable respecte la massa del cos central.

De forma més precisa,

on és ara la massa del cos orbitant, és la massa del cos central i r és la distància entre els dos cossos. Això és encara una simplificació que només val per a òrbites circulars i no el·líptiques, però almenys val per a cossos amb masses similars.

Referències

  1. 1,0 1,1 Lissauer, Jack Jonathan. Fundamental planetary science : physics, chemistry and habitability. Updated edition, 2019. ISBN 978-1-108-30406-1. 
  2. Space mission analysis and design. 3a edició. Torrance, Calif.: Microcosm, 1999. ISBN 0-7923-5901-1. 
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9