Share to: share facebook share twitter share wa share telegram print page

 

Hipèrbola

Hipèrbola

Una hipèrbola o hipèrbole es defineix com el lloc geomètric dels punts del pla per als quals és constant la diferència de les distàncies a dos punts fixos denominats focus.

La forma més freqüent d'una hipèrbola és la següent:

La hipèrbola és la corba cònica oberta formada dues branques resultat de la intersecció de les dues parts d'una superfície cònica amb un pla que la talla i que forma amb l’eix del con un angle més petit que amb la generatriu del con. És habitual pensar que cal que el pla sigui paral·lel a l'eix, però no és així i a més, en tots els casos, les dues branques de la hipèrbola són simètriques.[1]

Asímptotes

Una asímptota és una recta que, en prolongar-la indefinidament, s'acosta cada vegada més a la gràfica de la corba, però no arriba mai a tocar-la. Això passa perquè en les asímptotes les gràfiques no existeixen.

Continuïtat i discontinuïtat

Les representacions d'hipèrboles poden ser diferents, ja siguin contínues o discontínues. La diferència és que quan es podrà representar sense aixecar el llapis del paper la gràfica serà contínua i quan s'hagi d'aixecar el llapis del paper per força serà discontínua

Equacions de la hipèrbola

Hipèrbola equilàtera

  • L'equació d'una hipèrbola centrada en el punt (0,0) és:

on a i b són els semieixos major i menor.

  • Equació amb centre arbitrari:

on és el centre

Equacions en coordenades polars

Equacions paramètriques

Representació d'hipèrboles

Domini

Per a cercar el domini el que cal fer és trobar tots els nombres que facin que equació no tengui solució.

En aquest cas el domini seria:

(Això vol dir que el domini seria tots els nombres reals menys quan X=2 perquè seria 3 dividit 0 i no es pot dividir per 0 en cap cas.

Asímptotes

Les asímptotes són rectes verticals per on no passa la funció, és a dir, seria el nombre del domini. En aquest cas (2).

Punts de tall

Els punts de tall de les ens indiquen per on passa la gràfica quan .

El punt de tall de la ens indica per on passa la gràfica quan

Per saber els punts de tall en les X hem de donar valor 0 a la Y. hi hem de resoldre l'equació.

En el cas del punt de tall de la Y hem de donar 0 al valor de la X. hi hem de resoldre la divisió.

Signe de la funció

Per saber el signe de la funció en cada tram, els valors de la X han de ser les asímptotes i els nombres dels punts de talls de les x. Entre nombre i nombre heu d'agafar un nombre intermedi i substituir el nombre per la x i observar el signe. El signe ens indicarà el signe de la gràfica entre aquells dos intervals.

Vegeu també

Referències

  1. «hipèrbole | enciclopedia.cat». [Consulta: 1r juny 2022].
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9