Share to: share facebook share twitter share wa share telegram print page

 

Topologia producte

S'anomena topologia producte a una topologia construïda sobre el producte cartesià d'espais topològics a partir de la topologia dels factors. Va ser introduïda el 1930 per Tychonoff[1] , com la topologia menys fina que fa que les projeccions sobre cada factor en aplicacions contínues.

Aquesta topologia coincideix en el cas de producte d'un nombre finit de factors amb una altra potser més òbvia, anomenada topologia de caixes, introduïda prèviament per Tietz[2] a 1923. Però la topologia de caixes presenta propietats indesitjables per a un producte d'infinits factors: entre d'altres, el producte d'espais connexos no és necessàriament connex, ni el de compactes necessàriament compacte,[3] coses que sí que succeeixen per la topologia producte.

Per tot això, se sobreentén que en un producte cartesià, llevat que s'especifiqui el contrari. es fa servir sempre la topologia producte,

Definició formal

Sigui una família arbitrària (potser infinita) d'espais topològics. Truquem X al seu producte cartesià, ie i a la projecció sobre el factor corresponent.

Podem dotar X de la 'topologia producte, que és aquella que té com una subbase als conjunts de la forma on cada és un obert de .

Base de la topologia

La intersecció finita d'elements de la subbase donarà lloc als elements de la base, amb diferent resultat segons tractem amb un producte d'un nombre finit o infinit d'espais.

Producte d'un nombre finit de factors

En aquest cas la topologia producte serà la que té per base les caixes obertes, és a dir, el producte cartesià d'oberts

Producte d'infinits factors

Aquí els oberts bàsics seran de la forma:

Això condicionarà la forma dels oberts V de la topologia producte: tot obert, comproveu que per a tots els índexs excepte per a un conjunt finit, ja que ha de contenir un obert bàsic que es projecta d'aquesta manera.

Relació amb altres propietats topològiques

Referències

  1. Tychonov, A. (1930). Über die topologische Erweiterung von Räume, Math. Ann. 102, 544-561.
  2. Tietz, H. (1923). Beitrage zur allgemeinen topologia i, Math. Ann. 88, 280-312.
  3. Rubiano, G. N. Topologia general. Unibiblos. ISBN 958-701-108-2. (Capítol 4)
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9