Share to: share facebook share twitter share wa share telegram print page

 

Espai T1

En topologia, un espai T1 o de Fréchet es un cas particular d'espai topològic.

Definició

Un espai topològic és si per a cada parella d'elements diferents i d' existeix un obert que conté i no i un obert que conté i no . Noti's que no es necessari que aquests dos oberts siguin disjunts, cas en què estaríem parlant d'espais de Hausdorff o ).

Propietats

Sigui un espai topològic. Són equivalents:

  • és un espai .
  • és un espai i un espai .
  • Per a cada d', és tancat.
  • Tot conjunt d'un únic punt és la intersecció dels seus entorns.
  • Tot subconjunt d' és la intersecció dels seus entorns.
  • Tot subconjunt finit d' és tancat.
  • Tot subconjunt cofinit d' és obert.
  • L'ultrafiltre principal d' convergeix només a .
  • Per a cada punt d' i tot subcojunt d', és un punt adherent de si i només si és un punt d'acumulació de .

A més a més, la propietat de separació T1 és hereditària, la qual cosa significa que els subespais d'un espai T1 també són T1.[1]

Nota i casos

  • Sigui , on i és finit. Aleshores T es una estructura topològica sobre ℕ, anomenada estructura topològica cofinita que és T1 però no T₂.[2]
  • Qualsevol espai T1 finit és un espai topològic discret.[3]
  • Sigui i la topologia que consisteix dels subconjunts de X següents: , , , , no és T1, ja que no és tancat.[4]

Teorema

Un espai topològic és T1 si i només si cada punt és un conjunt tancat.[3][5]

Exemples

Referències

  1. Llopis, José L. «Propietats topològiques hereditàries» (en castellà). Matesfacil. ISSN: 2659-8442 [Consulta: 11 octubre 2019].
  2. Ayala y otros: "Elementos de topología general" ISBN 84-7829-006-0
  3. 3,0 3,1 Simmons: Introduction to Topology and Modern Analysis
  4. Llopis, José L. «Exemples i propietats dels espais topològics finits» (en castellà). Matesfacil. ISSN: 2659-8442 [Consulta: 11 octubre 2019].
  5. Llopis, José L. «Espai topològic de Fréchet T1» (en castellà). Matesfacil. ISSN: 2659-8442 [Consulta: 13 octubre 2019].
  6. Sapiña, R. «Topología cofinita» (en castellano). Problemas y Ecuaciones. ISSN: 2659-9899 [Consulta: 13 octubre 2019].
  7. Sapiña, R. «Espacio de Sierpinski» (en castellano). Problemas y Ecuaciones. ISSN: 2659-9899 [Consulta: 13 octubre 2019].

Vegeu també

Enllaços externs

  • Propietats dels espais de Fréchet (castellà)
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9