Share to: share facebook share twitter share wa share telegram print page

 

Projecció azimutal estereogràfica

Esquema il·lustratiu d'una projecció azimutal estereogràfica.

La projecció azimutal estereogràfica és una projecció cartogràfica azimutal que manté els angles respecte al centre, però no les distàncies ni les àrees relatives. Aquesta projecció no és equivalent (distorsiona les àrees relatives) però és conforme (manté les formes i els angles).[1][2]

Aquesta projecció s'obté projectant els punts de la superfície de l'esfera des del punt antípoda del centre de projecció (el punt de l'esfera tangent al pla de projecció).[3] Amb aquesta projecció, un mapa del món sencer és un cercle amb el centre de projecció (el punt de l'esfera tangent al pla de projecció) al centre del mapa. El punt antípoda no es pot representar (quedaria a l'infinit). La distorsió de distàncies i àrees creix com més lluny del centre del mapa.

Les línies ortodròmiques apareixen representades com circumferències. Les línies loxodròmiques apareixen representades com espirals logarítmiques. Les circumferències a la superfície de l'esfera apareixen representades amb la mateixa forma al mapa, com a cas especial les circumferències que passen pel centre de projecció apareixen representades com rectes (es poden pensar com circumferències de radi infinit).

Si el centre del mapa és un dels pols, els meridians apareixen representats rectes i els paral·lels com cercles concèntrics. Si el centre del mapa és qualsevol altre punt, els meridians i els paral·lels apareixen representats com corbes complexes.

Suposant una escala escala i un centre de projecció amb longitud long0 i latitud lat0, aquestes són les equacions generals per a obtenir les coordenades cartesianes x, y en el pla per al lloc amb longitud long i latitud lat:[4]

k = 2 * / (1 + sin(lat0) * sin(lat) + cos(lat0) * cos(lat) * cos(long - long0))
x = escala * k * cos(lat) * sin(long - long0)
y = escala * k * (cos(lat0) * sin(lat) - sin(lat0) * cos(lat) * cos(long - long0))

A la projecció estereogràfica considerem que el focus de llum està en els antípodes. La superfície que pot representar és major que un hemisferi. El tret més característic és que l'escala augmenta a mesura que ens allunyem del centre.

En la seva projecció polar dels meridians són línies rectes. A la projecció equatorial només són línies rectes l'equador i el meridià central.

Aquesta és una de les projeccions conformes que existeixen.

En arquitectura bioclimàtica s'utilitzen també un tipus de projeccions estereogràfica on se suposa a un observador ocupant el centre d'una esfera, i recolzat en un pla horitzontal, d'aquesta manera es defineixen dos sectors el superior o visible que correspon a la mitja esfera que està per sobre de l'horitzó i l'inferior o invisible que correspon al sector que està per sota de l'horitzó. D'aquesta manera es projecta un punt A situat per sobre de l'horitzó unint amb el centre de l'esfera anomenat comunament P, la recta que uneix P amb el punt talla a la semiesfera en un punt A 'que pertany a l'esfera, després s'uneix amb una recta A 'amb el nadir de l'esfera i s'obté en la intersecció amb el pla horitzontal un punt A, aquest punt és la projecció estereogràfica d'A. El més interessant d'aquest traçat és que es poden dibuixar les posicions relatives del sol per tot l'any i per a qualsevol latitud i d'aquesta manera podem realitzar càlculs d'insolació i estimar dies i hores en què el sol travessa una finestra.

Referències

  1. «Projecció azimutal estereogràfica». Gran Enciclopèdia Catalana. Barcelona: Grup Enciclopèdia Catalana.
  2. «Projecció azimutal | icgc». [Consulta: 9 octubre 2024].
  3. «Map - Map projections | Britannica» (en anglès). [Consulta: 1r juny 2024].
  4. Stereographic Projection Wolfram MathWorld.

Vegeu també

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9