Share to: share facebook share twitter share wa share telegram print page

 

Polinomi d'Alexander

El polinomi d'Alexander (també anomenat polinomi d'Alexander-Conway) és un invariant per nusos en forma de polinomi d'una variable. Fou descobert en 1923 pel matemàtic James W. Alexander.

Definició formal

Definició tradicional

Sigui K un nus a la 3-esfera i sigui X el revestiment cíclic infinita del complementari de K. Aquest revestiment pot obtenir-se tallant el complementari del nus al llarg de la superfície de Seifert de K i enganxant-ne infinitament les còpies de la varietat resultant amb frontera de manera cíclica. Hi ha una transformació del revestiment t actuant en X. Considerem la primera homologia (de coeficients enters) de X, . La transformació t actua en l'homologia, per tant podem considerar un mòdul sobre . És l'anomenat invariant d'Alexander o mòdul d'Alexander.

Aquest mòdul és finitament representable. La matriu que representa el mòdul s'anomena matriu d'Alexander. Si el nombre de generadors, r, és menor o igual al nombre de relacions, s, aleshores considerem l'ideal generat per tot r per r menors de la matriu; aquest és el ideal de Fitting o ideal d'Alexander i no depèn de l'elecció de la representació. Si r és major que s, fixem l'ideal 0. Si l'ideal d'Alexander és principal, en prenem un generador; és el polinomi d'Alexander del nus. Com que és únic només llevat productes pel monomi de Laurent , se'n fixa com forma normalitzada la que té terme independent positiu.

Alexander va demostrar que l'ideal que porta el seu nom és diferent de zero i sempre principal. Per tant, el polinomi d'Alexander sempre existeix i és clarament un invariant per nusos, que es denota com .

Definició de Conway

En 1969 el matemàtic John Conway, a partir de les relacions de Skein, trobà una definició equivalent del polinomi d'Alexander que en facilita el càlcul. Siguin L+, L- i L0 tres nusos que difereixen només en un creuament segons la següent figura:

Aleshores, el polonomi d'Alexander es pot definir a partir de les equacions

on O és el nus trivial.

Aquesta definició no només facilita el càlcul manual del polinomi, sinó que pot usar-se en computació.

Característiques

La característica principal del polinomi d'Alexander, que és la que el fa interessant i invariant de nusos, és el fet que és invariant per moviments de Reidemeister. Ara bé, no existeix una relació unívoca entre nusos i els polinomis d'Alexander (dos nusos diferents poden tenir el mateix polinomi d'Alexander, com passa amb les reflexions de mirall d'alguns nusos). És a dir, sigui K₂ un nus definit com la reflexió emmirallada d'un nus K1, i sigui el polinomi d'Alexander en t d'un nus K, en general (cosa que no passa amb altres invariants polinòmics per nusos).[1]

Una propietat directa per definició del polinomi d'Alexander és que, normalitzat per la seva variable de manera que tingui un terme de grau 0, compleix i que .[2]

Referències

  1. Weisstein, Eric W., «Polinomi d'Alexander» a MathWorld (en anglès).
  2. Rolfsen, Dale. Knots and Links (en anglès), 1976, p. 207-208 (Mathematics Lecture Series 7). 

Bibliografia

Vegeu també

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9