Share to: share facebook share twitter share wa share telegram print page

 

Moviments de Reidemeister

Moviments de Reidemeister
1r moviment 2n moviment
3r moviment

En la teoria de nusos, els moviments de Reidemeister són els tres moviments locals possibles en un diagrama de nus, és a dir els tres canvis més simples possibles que deixen el diagrama mostrant una representació del mateix nus. si dos diagrames representen el mateix nus, pot passar-se d'un a l'altre via els moviments de Reidemeister.

Foren descoberts independentment per Kurt Reidemeister en 1926 i per J. W. Alexander i G. B. Briggs en 1927.

Cadascun dels moviments opera en una petita regió del diagrama. El primer moviment (també anomenat de tipus I) consisteix a girar o crear un bucle. El segon (o de tipus II) consisteix a desplaçar un tros de nus sense creuaments sobre un altre. Finalment el tercer (o de tipus III) consisteix a passar un tros de nus sense creuaments per sobre o per sota d'un creuament. La notació per tipus fa referència a quants fragments de nus o tires estan involucrades. La resta del diagrama no queda modificat per cap d'aquests moviments.

Entre els usos dels moviments de Reidemeister hi trobem tant el fet de poder trobar i identificar nusos equivalents a través dels seus diagrames com el fet de portar diagrames fins a la seva representació més simple. (Vegeu el Teorema de Reidemeister).

També són d'utilitat a l'hora de definir invariants per nusos a través dels diagrames. Demostrant que una propietat d'un diagrama no canvia en aplicar-hi cap dels moviments de Reidemeister queda demostrat que aquesta propietat és invariant per nusos. De fet, alguns invariants per nusos com el Polinomi de Jones poden definir-se d'aquesta manera.

Mentre que el primer i el segon moviments redueixen el nombre de creuaments del diagrama (en un i dos, respectivament), el tercer no ho fa. D'altra banda, el segon i el tercer moviments mantenen invariant l'entortellament, mentre que el primer el fa variar.

Referències

  • J. W. Alexander; G. B. Briggs, On types of knotted curves. Ann. of Math. (2) 28 (1926/27), no. 1-4, 562–586. (anglès)
  • Kurt Reidemeister, Elementare Begründung der Knotentheorie, Abh. Math. Sem. Univ. Hamburg 5 (1926), 24-32 (alemany)
  • Bruce Trace, On the Reidemeister moves of a classical knot. Proc. Amer. Math. Soc. 89 (1983), no. 4, 722–724. (anglès)
  • Tobias Hagge, Every Reidemeister move is needed for each knot type. Proc. Amer. Math. Soc. 134 (2006), no. 1, 295–301. (anglès)
  • Stefano Galatolo, On a problem in effective knot theory. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 9 (1998), no. 4, 299–306 (1999). (anglès)
  • Lackenby, Marc «A polynomial upper bound on Reidemeister moves» (en anglès). Annals of Mathematics, 183, 2, 2015, p. 491-564. DOI: 10.4007/annals.2015.182.2.3.
  • Hass, Joel; Lagarias, Jeffrey C. «The number of Reidemeister moves needed for unknotting» (en anglès). Journal of the American Mathematical Society, 14, 2, 2001, p. 399–428. DOI: 10.1090/S0894-0347-01-00358-7.
  • Chuichiro Hayashi, The number of Reidemeister moves for splitting a link. Math. Ann. 332 (2005), no. 2, 239–252. (anglès)
  • Adams, Colin C. The Knot Book (en anglès). 
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9