Share to: share facebook share twitter share wa share telegram print page

 

Paràmetre d'escala

En la teoria de la probabilitat i estadística, el paràmetre d'escala és una classe especial de paràmetre numèric d'una família de paràmetres de distribucions probabilístiques. Com més gran sigui el paràmetre de l'escala, més àmplia serà la distribució.

Definició

Si una família de distribucions de probabilitat és tal que existeix un paràmetre s (i un altre paràmetre θ) per al qual una funció de distribució acumulada satisfà

llavors s és denominat «paràmetre d'escala», atès que la seva existència determina l' «escala» o «dispersió» d'una distribució de probabilitat. Si s és gran, la distribució serà més àmplia; si s és petita llavors la distribució estarà més concentrada.

Si la densitat de probabilitat existeix per a tots els valors d'un conjunt de paràmetres, llavors la densitat (només com una funció del paràmetre d'escala) satisfà

on és la densitat de la versió estandarditzada, és a dir, la densitat corresponent a .

Un estimador d'un paràmetre d'escala s'anomena estimador d'escala.

Manipulacions senzilles

Podem escriure en termes de , de la següent manera:

Donat que f és una funció de densitat de probabilitat, s'integra a la unitat:

Per la regla de substitució del càlcul integral, llavors tindrem:

Pel que està adequadament normalitzada.

Paràmetre de ràtio

Algunes famílies de distribucions fan servir un paràmetre de ràtio que és simplement la recíproca del paràmetre d'escala. Per exemple, una distribució exponencial amb paràmetre d'escala β i densitat de probabilitat

pot igualment ser expressada amb el paràmetre de ràtio λ de la següent manera

Exemples

  • La distribució normal té dos paràmetres: un paràmetre de localització i un paràmetre d'escala . En la pràctica, la distribució normal és freqüentment parametritzada en termes d'una escala al quadrat , el que correspon a la variància de la distribució.
  • Normalment, la distribució gamma és parametritzada en termes de paràmetre d'escala o la seva inversa.
  • Casos especials de distribucions, on el paràmetre d'escala equival a la unitat, poden ser anomenats «estàndard» sota certes condicions. Per exemple, si el paràmetre de localització equival a 0 i el paràmetre d'escala equival a 1, la distribució normal és coneguda com a «distribució normal estàndard», i la distribució de Cauchy com a «distribució de Cauchy estàndard».

Estimació

Es pot utilitzar una estadística per estimar un paràmetre d'escala sempre que:

  • sigui de localització-invariant,
  • escali linealment amb el paràmetre d'escala, i
  • convergeixi mentre creix la mida de la mostra.

Diverses mesures de dispersió satisfan aquestes propietats. Per fer de l'estadística un estimador consistent del paràmetre d'escala, en general, cal multiplicar l'estadística per un factor d'escala constant. Aquest factor d'escala es defineix com el valor teòric del valor obtingut dividint el paràmetre d'escala requerit pel valor asimptòtic de l'estadística. Tingueu en compte que el factor d'escala depèn de la distribució en qüestió.

Per exemple, per utilitzar la desviació absoluta respecte a la mitjana (median absolute deviation, DAM) per estimar la desviació estàndard de la distribució normal, s'ha de multiplicar pel factor

on Φ−1 és la funció quantil (la inversa de la funció de distribució acumulada) per a la distribució normal estàndard. És a dir, la DAM no és un estimador consistent per al desviament estàndard d'una distribució normal, però és un estimador consistent. De manera similar, la desviació absoluta respecte a la mitjana necessita ser multiplicada per aproximadament 1,2533 per ser un estimador consistent per al desviament estàndard. Diferents factors serien requerits per estimar la desviació estàndard si la població no seguís una distribució normal.

Vegeu també

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9