Share to: share facebook share twitter share wa share telegram print page

 

Nombre triangular

Els sis primers nombres triangulars.

Un nombre triangular és el resultat de sumar els n primers nombres naturals. S'anomenen d'aquesta manera perquè són el nombre d'elements necessaris per crear un triangle equilàter.

La fórmula per trobar l'n-èsim nombre triangular és:

També és igual al coeficient binomial .

Observem que cada nombre triangular conté una fila més que l'anterior, , de forma que es compleix la següent recurrència:

Origen

Tot i que actualment, es pren per conveni el primer nombre triangular com l'1, el primer nombre triangular històricament rellevant fou el Tetraktys, format per deu punts. Els nombres triangulars, i en particular el Tetractys, foren estudiats àmpliament pel filòsof Pitàgores i els seus deixebles. Els pitagòrics consideraven el nombre 10 un nombre universal, ja que segons ells el nombre 10 englobava tot l'univers seguint el següent principi:

  • El 10 era la suma de l'1, el 2, el 3 i el 4.
  • L'1 simbolitzava un punt, la mínima dimensió possible.
  • El 2 simbolitzava la longitud, ja que amb dos punts s'hi pot traçar una recta.
  • El 3 simbolitzava l'àrea, ja que amb tres punts es pot traçar un triangle.
  • El 4 simbolitzava el volum, ja que amb quatre punts es pot construir un tetraedre.

Suma de nombres triangulars

Demostracions visuals de sumes de nombres triangulars

Consecutius

Quan se sumen dos nombres triangulars consecutius sempre dona un quadrat perfecte, en terminologia de Pitàgores, un nombre quadrat. Tenim:

Per tant, sumant-los:

Iguals

La suma de dos nombres triangulars iguals ens dona una figura romboide, un nombre rectangular o oblong. Vegem el seu terme general:


Suma dels primers nombres triangulars

La suma dels n primers nombres triangulars és coneguda com a nombre tetraèdric, així l'enèsim nombre tetraèdric és la suma dels primers n nombres triangulars. La seva expressió és:


Test per comprovar si un nombre és triangular

Per comprovar si un nombre és triangular es pot realitzar la següent operació:

Si n és un enter, aleshores x és l'n-èsim nombre triangular. Si n no és un enter, aleshores x no és triangular.

Vegeu també



Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9