Share to: share facebook share twitter share wa share telegram print page

 

Mitjana geomètrica

Construcció geomètrica per a trobar les mitjanes aritmètica (A), quadràtica (Q), geomètrica (G) i harmònica (H) de dos nombres a i b.

La mitjana geomètrica o proporcional d'una quantitat finita de n nombres reals és l'arrel n-èsima del producte de tots els nombres.[1][2][3]

Per exemple, la mitjana geomètrica de 2 i 18 és:[4]

En un altre exemple, la mitjana geomètrica de 1, 3 i 9 és:


La mitjana geomètrica només és rellevant quan tots els nombres són del mateix signe.[5] Si almenys un d'ells és 0, llavors el resultat és 0. Si els nombres són negatius, s'utilitza el seu valor absolut i s'assigna un signe negatiu al resultat. En una barreja de valors positius i negatius la mitjana geomètrica no és rellevant, ja que si hi ha una quantitat parell de nombres negatius llavors la mitjana geomètrica és positiva independentment de la proporció de nombres negatius que hi hagi, serà negativa si tant n com la quantitat de nombres negatius és senar, i inexistent en els nombres reals en el cas que n sigui parell i la quantitat de nombres negatius sigui senar (i si s'agafa el seu valor absolut com en el cas que són tots negatius, l'assignació de signe a la mitjana no és evident).

Se sol utilitzar en la manipulació estadística de variables amb distribució no normal.

Referències

  1. «mitjana | enciclopèdia.cat». [Consulta: 27 novembre 2020].
  2. «geometric mean | mathematics | Britannica» (en anglès). [Consulta: 24 gener 2022].
  3. Geometric Mean a MathWorld (anglès)
  4. «Geometric Mean». [Consulta: 26 gener 2022].
  5. GeorgiGeorgiev-Geo. «Geometric Mean Calculator» (en anglès). [Consulta: 26 gener 2022].
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9