Share to: share facebook share twitter share wa share telegram print page

 

Graf cicle

Un graf cicle de longitud 6

En teoria de grafs, un graf cicle o graf cíclic és un graf que consisteix d'un conjunt de vèrtexs connectats mitjançant una cadena tancada. El graf cicle es denota per Cn. El nombre de vèrtexs de Cn és igual al nombre d'arestes, i tot vèrtex té grau 2;[1] és a dir, tot vèrtex té exactament dues arestes que hi són adjacents.

Terminologia

Existeixen molts sinònims per a "graf cicle"; entre ells, graf cicle simple i graf cíclic, encara que aquest últim terme és menys utilitzat, perquè també pot referir-se als grafs que no són acíclics. Entre els estudiosos de la teoria de grafs també s'utilitzen cicle, polígon o n-cicle. Hom diu que un cicle amb un nombre parell de vèrtexs és un cicle parell, i un cicle amb un nombre senar de vèrtexs s'anomena cicle senar.

Propietats

Un graf cicle és:

Addicionalment, com que els grafs cicle es poden dibuixar com a polígons regulars, les simetries d'un n-cicle són les mateixes que les d'un polígon regular amb n costats, el grup diedral d'ordre 2n.[3] En particular, existeixen simetries que porten un vèrtex qualsevol a un altre vèrtex qualsevol, i una aresta qualsevol a una altra aresta qualsevol; per tant, l'n-cicle és un graf simètric.

Graf cicle dirigit

Un graf cicle dirigit de longitud 8

Un graf cicle dirigit és una versió dirigida d'un graf cicle, amb totes les arestes orientades en el mateix sentit.

Un graf cicle dirigit té grau d'entrada uniforme igual a 1 i grau de sortida uniforme igual a 1.

Els grafs cicle dirigits són grafs de Cayley per als grafs cíclics,[4] amb

i .

Referències

  1. Weisstein, Eric W., «Cycle Graph» a MathWorld (en anglès).
  2. Asratian, Armen S.; Denley, Tristan M. J.; Häggkvist, Roland. «Theorem 2.1.3». A: Bipartite Graphs and their Applications. 131. Cambridge University Press, 1998, p. 8 (Cambridge Tracts in Mathematics). ISBN 9780521593458. «(anglès) During the course of this book we shall meet several characterisations of bipartite graphs, but let us begin with one of the most widely used, which was obtained by Kőnig (1916)» 
  3. Rosen, Kenneth H.; Michaels, John G. «8.10.2. Graph automorphisms». A: Handbook of Discrete and Combinatorial Mathematics (pdf). CRC Press, 2000, p. 622. ISBN 0-8493-0149-1.  Arxivat 2017-10-13 a Wayback Machine.
  4. Trevisan, Luca. «in theory: Characters and Expansion», 21-12-2006. [Consulta: 16 juny 2016].

Vegeu també

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9