Share to: share facebook share twitter share wa share telegram print page

 

Divergència

Per a altres significats, vegeu «divergència (desambiguació)».
D'esquerra a dreta: camp amb divergència positiva, amb divergència negativa, i amb divergència nul·la

En càlcul vectorial, s'anomena divergència a l'operador que mesura la tendència d'un camp vectorial per originar-se o convergir a un determinat punt. Per exemple, per un camp vectorial que denoti la velocitat del flux de l'aigua escolant-se per una banyera, la divergència tindria valor negatiu al forat de la banyera, ja que l'aigua se'n va per allà (si només considerem dues dimensions); lluny del forat, la divergència seria zero, ja que no hi ha cap més pèrdua o font d'aigua.[1][2] Una altra notació comú de la divergència és ∇·F. Veure en aquest sentit operador nabla.

Un camp vectorial que té divergència zero s'anomena solenoidal.

Definició

Sigui x, y, z un sistema de coordenades cartesianes en un espai euclidià de dimensió tres, i siguin i, j, k les bases dels vectors unitat corresponents.

La divergència d'un camp vectorial diferenciable continu

F = Fx i + Fy j + Fz k

es defineix com la funció de valor escalar

Encara que s'expressi en termes de coordenades, el resultat és invariant sota transformades ortogonals, tal com suggereix la interpretació física.

Interpretació física

En termes físics, la divergència d'un camp vectorial és l'abast en el qual el flux d'un camp vectorial es comporta com una font o un desguàs en un punt determinat. De fet, una alternativa dona la divergència com la derivada del flux net d'un camp vectorial a través de la superfície d'una esfera petita relativa amb el volum de l'esfera.[3] Concretament,

on S(r) denota l'esfera de radi r al punt p en R3, i la integral és la integral de superfície respecte de n, la normal a l'esfera.

Per la interpretació física, un camp vectorial amb divergència constant zero s'anomena incomprimible – en aquest cas, no hi pot haver cap flux net a través de cap superfície tancada.

Propietats

Les propietats següents deriven totes de les regles de diferenciabilitat ordinària del càlcul. La més important, la divergència és un operador lineal,

per tots els camps vectorials F i G i tots els nombres reals a i b.

Hi ha una norma de producte del tipus següent; si φ és una funció de valor escalar, i F és un camp vectorial, llavors

o en notació més suggestiva

Una altra regla del producte pel producte escalar de dos camps vectorials F i G en tres dimensions implica el rotacional, que és:

o bé

El Laplacià d'un camp escalar és la divergència del gradient del camp.

La divergència del rotacional de qualsevol camp vectorial (en tres dimensions) és constant i val zero.

Al contrari, si tens un camp vectorial F amb divergència nul·la definit en una bola en R3, llavors existeix algun camp vectorial F en aquesta bola amb F = rot(G). Per regions en R3 més complicades que boles, l'última afirmació pot no ser veritat.

Vegeu també

Referències

  1. «Divergència». Gran Enciclopèdia Catalana. Barcelona: Grup Enciclopèdia Catalana.
  2. «divergence» (en anglès). britannica.com. [Consulta: 12 setembre 2014].
  3. «Divergence» (en anglès). wolfram.com. [Consulta: 12 setembre 2014].

Enllaços externs

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9